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ABSTRACT

In the context of multi-agent multi-armed bandits (MA-MAB), fair-
ness is often reduced to outcomes: maximizing welfare, reducing
inequality, or balancing utilities. However, evidence in psychology,
economics, and Rawlsian theory suggests that fairness is also about
process and who gets a say in the decisions being made. We intro-
duce a new fairness objective, procedural fairness, which provides
equal decision-making power for all agents, lies in the core, and pro-
vides for proportionality in outcomes. Empirical results confirm that
fairness notions based on optimizing for outcomes sacrifice equal
voice and representation, while the sacrifice in outcome-based fair-
ness objectives (like equality and utilitarianism) is minimal under
procedurally fair policies. We further prove that different fairness
notions prioritize fundamentally different and incompatible values,
highlighting that fairness requires explicit normative choices. This
paper argues that procedural legitimacy deserves greater focus as a
fairness objective, and provides a framework for putting procedural
fairness into practice.
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1 INTRODUCTION

From the Magna Carta to the words that open constitutions and
charters around the world, we have long understood that dignity
and fairness require more than simply providing a good outcome.
To be fair requires treating each person as an equal, entitled to a
voice in the decisions that govern their lives. Yet, in the multi-agent
systems we build today, this truth is too often forgotten [9-11]. Fair-
ness is almost always reduced to optimizing for a specific outcome:
the sum of utilities, the balancing of welfare, or the smoothing of
inequality, echoing the consequentialist tradition of judging actions
by their aggregate results [22, 23]. While these notions of fairness
may provide elegance and tractability, they miss the very essence
of what we consider to be fair. They consider what is gained by a
set of decisions, not how they were decided. This is an imposition
of values from outside of the system, rather than respecting the
very agency from within.

This paper begins from a new conviction, that fairness in multi-
agent systems must be grounded not in optimal outcomes, but in
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the principle of equal voice. To guarantee this is to honour the
dignity of participation in multi-agent decision-making; to ignore it
is to risk building systems that sacrifice legitimacy, that is, whether
the decisions themselves are perceived as rightful and acceptable,
for the sake of efficiency. This principle reflects a contractualist
view of fairness, which holds that a decision is only legitimate if it
cannot be reasonably rejected by those subject to it [19]. We call
this principle procedural fairness.

This moral insight is not merely philosophical. Extensive evi-
dence in psychology and economics shows that people consistently
value fair process—even if that means outcomes are less than ideal
[1, 12, 24]. For example, Lind and Tyler [12] recount an example
of a woman whose traffic ticket case was dismissed; however, she
still left the courtroom angry because she felt she had compelling
evidence and the judge never heard her argument. In fact, many
people reported feeling the same way, despite being handed the
best possible outcome from the court. This same dynamic appears
in collective allocation systems like participatory budgeting, where
communities not only want good projects but a voice in which
projects are chosen.

Yet existing approaches in multi-agent learning overwhelmingly
reduce fairness to outcomes such as utilitarianism, Nash welfare,
or inequality. While they capture important values, they impose
fairness as an external criterion rather than letting it arise from the
agents themselves. What is missing in the literature is a framework
that gives agents themselves an equal share of decision-making
power. Inspired by Rawls’ notion of pure procedural justice [18], we
formalize procedural fairness in MA-MABs, a framework where
each action (pulling an arm) produces potentially different rewards
for each agent, sampled from potentially different distributions.
This framework naturally captures both the allocation of benefits
and the distribution of decision-making power in a simple and
easy-to-understand way.

To situate procedural fairness, we compare it, both theoretically
and empirically, with two other notions of fairness in multi-agent
systems: equality fairness, where outcomes are distributed so that
agents receive as equal outcomes as possible, and utilitarian fairness:
decisions maximize aggregate welfare, prioritizing total benefit.

Our central claim is that procedural fairness deserves recognition
alongside traditional notions of fairness like Nash welfare, inequal-
ity, and utilitarianism, not as an alternative, but as a principle of
legitimacy. We now outline our main contributions:

e We define procedural fairness formally in MA-MABs, and
compare it to utilitarian, equality fairness, and Nash welfare.

e We prove impossibility results: fairness notions are funda-
mentally incompatible, showing that fairness requires nor-
mative choices.

e We design algorithms for learning fair policies with sublinear
regret guarantees.



e We show that procedurally fair policies lie in the core, en-
suring stability against coalitional deviation.

e We empirically evaluate our methods across a variety of set-
tings, and show that procedural fairness balances efficiency
and equality while preserving legitimacy.

2 MULTI-AGENT MULTI-ARMED BANDITS

Let N represent the number of agents in a multi-arm multi-agent
bandit setting, and let K = {1, ..., K} be the set of arms where K =
|K| represents the number of arms. Further, let P = (py, ..., px)
represent a policy where each element, py, represents the probability
that arm k € K is pulled in any given turn. Note that 0 < p; <
1,Vpi € P, and that Z{il pi = 1. We, at times, abuse notation and
refer to K as the set of arms.

When an arm is pulled, all agents receive some reward drawn
from a distribution. Agents will not necessarily receive the same
reward, and distributions may vary from agent to agent and from
arm to arm. We let p* € RN*K represent the agents’ true reward
means, where 7, represents the mean reward agent i receives
when arm k is pulled. Additionally, we let i* denote the agents’
reward estimates at time ¢, where [lfk is the estimate at time t
of the reward agent i receives when arm k is pulled. We let o; &
represent the standard deviation of rewards agent i receives when
arm k is pulled. Finally, let F; be the set of agent i’s favourite arms,
Fi={jeXK| Hi; = maXgek pzk} where yi; ; represents the reward
agent i receives when arm j is pulled.

In all instances, we assume that each true reward mean is strictly
bounded between 0 and 1,i.e., 0 < pzk <1, Vie{l,...,N},Vke
{1,...,K}, and that drawn rewards are in [0, 1].

We next define the following concepts since they are founda-
tional for our framework.

DEFINITION 1 (UtILITY). The utility of an agent i under a policy
P = (p1, p2, ... px) is defined as the agent’s expected utility U;(P) =
2115:1 PkHZk'

DEFINITION 2 (DECISION SHARE). The decision share of agent i
under a policy P = (py, ..., px) is defined as the total probability
assigned to the agent’s favourite arm(s): DS;(P) = Yier, Pk, where
F; is the set of agent i’s favorite arms, defined as F; = {j € K | pij; =
maXgex ”ik}

DEFINITION 3 (UTILITY-BASED NASH WELFARE). The utility-based
Nash welfare is defined similarly to [9]: ]_[fil Zlk(:l Pip;) where py €
(p1 - PK), Which is some policy. This follows the traditional notion
of Nash welfare found in the literature.

DEFINITION 4 (DECISION-SHARE-BASED NASH WELFARE). Nash
welfare is defined as [TX, 2keF; Pk where py € (p1, ..., px), which is
some policy and F; is the set of agent i’s favourite arms: F; = {j €
K| p;; = maxgeq yzk}. In other words, its the Nash welfare of the
agents’ decision shares.

3 RELATED WORK

Our work draws on a long-standing debate and evidence from
psychology, economics, and political philosophy that one cannot
simply consider the fairness of outcomes, but must consider the

fairness of process. In psychology, Tyler and Lind’s work on proce-
dural justice [12, 24] shows that individuals value having a voice
in decisions and weigh the legitimacy of decisions when decid-
ing whether or not they follow these decisions. Further, empirical
evidence suggests that individuals prefer fair process over opti-
mal outcomes [1]. In political philosophy, Scanlon’s contractualism
[19] and Rawls’ notion of pure procedural justice [18] articulate
legitimacy as whether decision-making rules themselves are justifi-
able. While these ideas are separate from multi-agent learning, we
incorporate these insights into our work.

When it comes to bandits, prior research focuses on arm-centric
fairness, where arms are guaranteed minimum pull rates [16] or
selected based on merit to avoid favoring worse arms [11]. Another
distinct line is online fair division with private rewards, where
sequentially arriving items are allocated to individual agents. Works
like Procaccia et al. [17] and Schiffer and Zhang [20] maximize social
welfare under constraints such as envy-freeness or proportionality
in expectation, learning agent preferences via bandit feedback. This
contrasts with our problem, which is more aligned with a public
good setting since an arm pull may generate rewards for all.

The most analogous setting to ours is MA-MABs with public re-
wards, which captures the result of an arm-pull as an N-dimensional
reward vector for each agent. However, here too, the focus has
largely been on outcome-based fairness or efficient coordination.
Outcome-focused fairness includes maximizing utility-based Nash
Social Welfare (NSW), either as a product of utilities (NSWj,0q)
[9, 10] or its geometric mean [26]. Other aggregate outcome met-
rics include the Generalized Gini Index (GGI) [2] or achieving Pareto
optimality in the reward vector space [25]. These methods evaluate
fairness based on the properties of the resulting reward distribu-
tions. Separately, research on MA-MABs with public rewards also
addresses efficient coordination and communication for utilitarian
goals, such as maximizing collective team utility [3].

4 FAIRNESS IN MULTI-AGENT MULTI-ARMED
BANDITS

We formally define three notions of fairness, namely, procedural,
utilitarian, and equality fairness. We couple each of these definitions
with a fairness score that, given some policy, P, measures how fair
the policy is under the given fairness criteria. For each notion of
fairness, you can find an illustrative example in Appendix A.1.

4.1 Procedural Fairness

Procedural fairness is the principle that each agent should have
equal influence over how probabilities are distributed across the
arms. Inspired by broader theories of justice (e.g., Rawls), this pa-
per provides the first formalization of procedural fairness in the
multi-agent bandit setting. Procedural fairness is particularly rele-
vant in contexts where the legitimacy of the decision process is as
important as the outcomes it produces. We formalize this notion of
procedural fairness as follows:

DEFINITION 5 (PROCEDURAL FAIRNESS). Let P = (py, pa, - Pk)
be a policy and let p; = i pix be the probability mass allocated
by agent i across all of the arms. A policy P is procedurally fair if it
satisfies the following conditions:



1. Equal decision-making influence. Each agenti € {1,...,N}
is allocated an equal share of the total probability mass, Zszl ik =
%> Vi € {1,..., N}, where p; . represents the probability mass that
agent i contributes to selecting arm k.

2. Preference-based allocation. Each agent assigns their prob-
ability mass to their most preferred arm(s), defined as the set of
arms with the highest mean reward for that agent: F; = {j € K |
Hi ; = maXgeg pzk}. If multiple arms achieve the same maximum
expected reward, an agent may distribute their probability mass
arbitrarily among them.

To score a given policy’s procedural fairness, we formulate an
optimization problem. The intuition is: given some probability dis-
tribution, can we allocate # of probability on behalf of each agent
on their favourite arms, subject to the given policy? The extent to
which we can allocate these decision shares is the procedural fair-
ness score. We define y;; as a decision share variable, representing
how much of agent i’s decision share is allocated to arm j, provided
that arm j € F;. The optimization, which we will call PF(y, P), is
as follows:

N
max Z Z yij

i=1 jeF;
. 1 .
subject to Z yij < N Vie N
J€Fi
Z yij <p; VjeK
i:jeF;

yij =0 Vi,j¢Fi

For an illustrative example, please refer to Appendix A.2.

4.2 Equality Fairness

Equality fairness represents equal outcomes, where the policy aims
to give each agent as close to equal expected rewards as possible.
This principle is most useful in contexts where balance across agents
matters more than efficiency or giving each agent equal voice. We
define equality fairness as follows:

DEFINITION 6 (EQUALITY FAIRNESS). A policy P = (p1,. .., pk)
is equally fair if it minimizes inequality in expected rewards among
agents. Formally, the policy P is given by:

K K 2
(Z Pikiy ZPLﬂE,k)
k=1

2
P= in ——
I NN ) 2| 2

i>j
The following formula serves as a measure for equality fairness:

EF(y",P) =1—|D(P) - D(P")],

2
2
D(P) = m Z (Zpkﬂik - Zpkﬂ;k) s
i>j \ k k

and P* is an optimal fairness policy. This objective captures equality
by penalizing pairwise reward disparities, ensuring that agents
achieve as similar expected utility as possible. Please note that
D(-) € [0,1], so EF(u*,P) € [0, 1].

4.3 Utilitarian Fairness

Utilitarian fairness is the notion of maximizing the overall utility of
the group. This principle is most appropriate in efficiency-driven
domains where aggregate outcomes matter most.

DEFINITION 7 (UTILITARIAN FAIRNESS). A policyP = (p1, ..., pk)
is utilitarian if it maximizes the expected utility among all agents.

Formally, the policy P is given by: P = arg maxprep Y0, 211::1 DL,

The fairness score for utilitarian fairness is calculated using the
2ieN Zke%Pkﬂzk
YieN Zke'KP]*(Il:k
percentage share of what the policy is achieving with respect to
what can be achieved.

following equation: UF(u*, P) = . This provides a

5 ALGORITHMS

We present learning algorithms for the MA-MAB setting, each
optimizing for a specific fairness objective. While each definition of
fairness calls for the optimization of a different objective, Algorithm
1 presents the general learning procedure. In Algorithm 1, each arm
is sampled once, and then it calls a function, OptimizationStep,
which optimizes for the specific objective, for a total of T — K steps.
In the end, it returns the learned policy. In the following sections, we
define OptimizationStep for each of our three fairness objectives.
For each fairness type, we also prove regret bounds. Because each
fairness notion optimizes a fundamentally different objective, the
appropriate notion of regret must also be defined relative to that ob-
jective. These cannot be directly compared because the underlying
ideals themselves are different for each notion.
Procedural Fairness Regret. R°F(T) = ¥ 1{3i : F;(t) # F},
counting mismatches between estimated and true favourite-arm
sets. Unlike EF and UF, which are outcome-based and naturally ad-
mit score-gap regrets, PF is process-based. Its correctness depends
on identifying each agent’s favourite set and enforcing equal influ-
ence in the resulting policy. For this reason, we define PF regret in
terms of the number of mismatch rounds in favourite-set recovery,
which is analogous to a mistake-bound criterion.

Equality Fairness Regret. REF(T) = sz1 [D(P;) — D(P*)], mea-
suring deviation in inequality from the equally fair optimum.
Utilitarian Fairness Regret. RVF (T) = Zthl [UP*) -U(Py)], a
more standard version of regret, where U(P) = Zﬁv ZIk( PR -

Please note that all algorithms use K arms, N agents, rewards
u € [0,1]NV*K policy p € AK.

5.1 Procedural Fairness

To learn a procedurally fair policy, we formulate a constrained
optimization problem that ensures each agent allocates an equal
decision share to their most preferred arms. This formulation is
then used in Algorithm 2, which underpins the OptimizationStep
in Algorithm 1. Additionally, recall that ﬁ{k is the estimated mean



of arm k for agent i at timestep t.

s 1130

i=1 jeF;
. 1 .
subject to Z Yij =y VieN (1)
JEF;
D ui=p VieK @)
i:jeF;

0<p;j=<1 VjeXK, yij =0 VieN,j¢F
Constraint (1) ensures that each agent’s total decision share is ﬁ
while constraint (2) guarantees that each arm’s total probability
equals the sum of decision shares it receives.

When agents have multiple arms, procedural fairness permits
many valid allocations. To resolve this ambiguity, we break ties
by maximizing decision-share-based Nash welfare. The reason for
using this tie-breaking method is that it has some nice theoretical
properties, which we will discuss later. In simple cases (e.g., when
each agent has a single favoured arm), closed-form solutions exist.
However, in the general case with multiple favoured arms, an LP
formulation is required to preserve the theoretical properties we
study. However, any tie-breaking method will satisfy procedural
fairness on its own. We adopt the LP approach throughout.

When learning the optimal policy, the favourite set is derived
using UCB-style concentration bounds. For each agent, we compare
every arm’s upper confidence bound with the lower confidence
bound of the empirically best arm. Any arm whose UCB overlaps
this lower bound remains in the favourite set. To guarantee conver-
gence, we must ensure that these intervals shrink over time, as we
need the intervals to converge to 0 to recover the true favourite set.
To solve this problem, we select an arm at random with probability
t=(=Y) where y € (0,1) is a decay parameter. This guarantees that
every arm is pulled sufficiently often so that the confidence radius
vanishes as t — oo. This is proven in Appendix B.4, Lemma 3.

THEOREM 1. With high probability, the regret bound for the Proce-
2 1
dural Fairness algorithm, RPF(T), is O(TY + [(H'X)ZIZ(M] v),

min
where Amin = Mminje[n] Minjep, Minggr, (yzj - y;k) > 0, and
F; is the set of agent i’s favourite arms based on the true means.

Refer to Appendix B.6 for the full proof.

Procedurally fair policies also have additional guarantees with
respect to the total amount of decision share that each agent will
receive:

OBSERVATION 1. With any tie-breaking method, the procedural
fairness policy gives agents at least 1/N of their maximum deci-
sion share and at least 1/N of their maximum achievable utility, in
expectation.

Please refer to Appendix B.7 for the full proof.

The complexity of the optimization problem is also relevant.
Fortunately, we can easily determine that this problem is convex,
and thus can be solved in polynomial time:

OBSERVATION 2. The Procedural Fairness optimization problem is
convex and solvable in polynomial time.

Algorithm 1 LearnPolicy

Require: Fairness method method € {PF,EF, UF}, Number of
timesteps T, Exploration decay parameter y if method = PF,
tolerance

: Initialize policy Py = %1 K

. Initialize arm counts n = Ok, and estimates fi = Onxx

: for each arm k € K do

Pull arm k and observe rewards r;Vi € N

Update estimates fI; « r;Vi € N

Update arm counts ng < nj + 1

: end for

: fort=KtoTdo

P; « OptimizationStep(f,n, N, K, t,y, a)

Sample an arm k according to P;

Pull arm k and observe rewards r;Vi € N

Update estimates fJ; r using incremental mean update

Update arm counts ng < nj + 1

: end for

: return final policy Pr

I I B AN~ VR R

I T o S S =
[ T =]

Proor. Note that the constraints are linear, so the feasible set is
convex. The objective (equivalent to YV, log (Z jeR P j)) is concave
(a sum of log-affine terms). Thus we are maximizing a concave
objective over a convex set, which is a convex optimization problem.
Such problems are solvable in polynomial time, and in practice, we
use a standard solver.

[m]

5.2 Equality Fairness

To learn an equally fair policy in a multi-arm multi-agent bandit,
we balance exploration and exploitation in a UCB-like fashion, also
using an optimization step:

n}}n N(N l)g Zpkﬂlk_zpkﬂjk —aZ

subject to Z prk=1 0<pr <1, Vke¥K.
keK

The resulting P will be the policy that we return to the main
algorithm.

THEOREM 2. The regret bound for the Equality Fairness algorithm,
REF(T), is O(+/KT In (NKT)) when a = 4

Please refer to Appendix B.9 for the full proof.

5.3 Utilitarian Fairness

For utilitarian fairness, we use a very similar algorithm to UCB.
The reason for this is that UCB optimizes utilitarian fairness by
trying to find the arm that maximizes overall utility. Thus,

ma: Z ZPkﬂlk+aZPk,/21n(NKt)
P ieN ke K ny

subject to Zpk =1, 0<pr<1 VkeXkK.
keK

21n(NKt)



Algorithm 2 OptimizationSteppr: Procedural Fairness Policy Up-
date

Require: Estimates /i, pull counts n* = (n})re|x], number of
agents N, number of arms K, time step ¢, exploration decay y,
tolerance a

1: With probability t~(17)| select an arm uniformly at random
and return. Otherwise:
2: for each arm k € [K] do

R Y T
3: z, — e

+00, if n]tC =0
4: end for
5. Fe{} > container holding F;foralli
6: for each agenti € [N] do
7: J ¢ argmaxj¢|g] [11’ 7 > break ties arbitrarily
8: ﬁie{ke[K]:ﬁ£k+az£Zﬁf’j—az}f}
o Fe FU{f)
10: end for
11: Solve the procedural fairness optimization using F (and ) to
obtain P

12: return updated policy P

The resulting P is returned to the main algorithm.

THEOREM 3. The regret bound for the Utilitarian Fairness algo-

rithm, RVF(T), is O((N + «)y/KT In (NKT)), witha > N.
Please refer to Appendix B.10 for the full proof.

6 THEORETICAL RESULTS
6.1 Impossibility Results

We show that these different notions of fairness provably conflict,
and that there are instances where one must be prioritized over the
others. These results make explicit that no single policy can be guar-
anteed to satisfy all fairness ideals simultaneously, underscoring
that procedural fairness is not just another outcome-based criterion
but a distinct axis of fairness. These results serve as a motivation
for procedural fairness as a unique, but necessary, definition of
fairness.

OBSERVATION 3. For multi-agent multi-armed bandit settings with
N > 2 agents and K > 2 arms, there exist reward structures for which
no policy can simultaneously achieve perfect procedural fairness and
perfect equality fairness.

Proof by counterexample. Please refer to Appendix B.11 for the
full proof.

Furthermore, it is not possible to guarantee perfect procedural
fairness and utilitarian fairness.

OBSERVATION 4. For multi-agent multi-armed bandit settings with
N > 2 agents and K > 2 arms, there exist reward structures for which
no policy can simultaneously achieve perfect procedural fairness and
perfect utilitarian fairness.

Proof by counterexample. Please refer to Appendix B.12 for the
full proof.

6.2 Procedural Fairness and the Core

The core is a stability notion originating in cooperative game the-
ory [21]. In the context of public decision-making [6], it represents
a distribution over alternatives (arms) that no coalition of agents
A C {1,2,...,N} of size |A| would have an incentive to deviate
from, given their proportional share of probability (JA|/N). We de-
fine the core in our setting in two ways, considering both utility
(outcome core) and decision share (procedural core).

DEFINITION 8 (OuTcOME CORE). Recall that given a distribution
over arms, P, an agent i’s expected utility is u;(P) = P - u; where
u; € R is the reward vector for agent i. We say a distribution P € A
is in the outcome core if there is no coalition of agents A C {1,2,..,N}
and distribution P’ € A¥ such that %ui(P’) > u;(P),Vi € A with at
least one strict inequality.

The procedural core adapts the classic notion of the core in co-
operative game theory to the setting of procedural fairness. Rather
than considering the agents’ expected utility, we consider their
decision share-the total probability mass assigned to the agents’
most preferred arms.

DEFINITION 9 (PROCEDURAL CORE). Recall that p is the reward
matrix. Let F; = {k € ‘7(|yzk = maXjex yij} denote agent i’s
favourite arms. Define a binary vector X; € {0, 1}¥ for each agent i,
where X; k] is 1ifk € F; and 0 otherwise. Thus, given a policy, P, the
decision share of agent i is defined as f;(P) = Zle Xilklpx = PX;.
Same as the outcome core, a policy P is in the core if there is no coali-
tion of agents A C {1,2, ..., N} and distribution P’ € A¥ such that
%ﬂi (P’) = Bi(P) Vi€ A with at least one strict inequality.

The procedural core carries interesting implications for our set-
ting, namely, that maximizing utility-based Nash welfare, as pre-
sented by Hossain et al ([9]) does not necessarily lie in the proce-
dural core.

THEOREM 4. A utility-based Nash Welfare-maximizing distribu-
tion need not lie in the procedural core.

Proof by counterexample. Please see Appendix B.13 for the full
proof.

Interestingly, probability distributions that are procedurally fair
do, in fact, lie within the procedural core, if we tie break between
an agent’s favourite arms by maximizing the decision-share-based
Nash welfare, as we do when we aim to learn procedurally fair
policies on a multi-arm multi-agent bandit.

THEOREM 5. With decision-share-based Nash-welfare maximizing
tie-breaking, the procedural fairness policy is in the procedural core.

ProoF SKETCH. The intuition behind this proof is that if any
coalition could block the chosen decision-share-based Nash welfare-
maximizing policy, then forming the convex combination of the orig-
inal and deviating policy would strictly increase its decision-share-
based Nash welfare, which contradicts our assumptions, so no such
coalition exists. Please see Appendix B.14 for the full proof.

Additionally, we can see that the procedural core requires proce-
dural fairness.

THEOREM 6. Procedural core implies procedural fairness.
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Figure 1: Average fairness metrics per policy type. Each column refers to a specific policy maximizing a certain fairness notion,
such as procedural, equality, or utilitarian fairness, maximizing utility-based Nash social welfare, or the Generalized Gini
Index. Each bar represents a score for a fairness type, such as procedural, equality, or utilitarian fairness, and the error bars
represent one standard deviation from the mean.

Policy Performance by Fairness Metric - MTurk Dataset
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Figure 2: Shows each fairness notion’s optimal policy scored on the three metrics. Each bar indicates each fairness metric, and
the columns indicate each fairness notion or algorithm’s optimal policy. This graph has no error bars at it is the result from a
single bandit instance (the dataset).

Proor. Consider any coalition consisting of a single agent. This algorithm [9], balances fairness and efficiency by favouring alloca-
agent would allocate all probability to their favourite arm. This tions where all agents receive non-trivial utility. While it doesn’t
would give them a decision share of 1/N. Thus any distribution in account for procedural fairness, it serves as a strong comparator
the procedural core must give any agent at least 1/N probability due to its prominence in the literature.
on their favourite arm. Thus it satisfies our definition of procedural Here, we show that optimizing for utility-based Nash welfare
fairness above. O does not guarantee Pareto dominance of procedurally fair policies,

and a procedurally fair policy does not guarantee Pareto dominance
6.3 Lack of Pareto Dominance Between Fairness of utility-based Nash welfare-optimized policies.
Concepts

THEOREM 7. Utility-based Nash welfare-optimal policies and pro-
cedurally fair policies are not guaranteed to Pareto dominate one
another.

We briefly discuss the subject of Pareto optimality. We frame Pareto
optimality in the case of fairness metrics. Specifically, a policy
Pareto dominates another policy if it scores at least as high as
another policy on all three fairness metrics, with at least one strictly

greater. Formally: Proof by counterexample. Please see Appendix B.15 for the full

proof.

DEFINITION 10. Pareto dominance. A policy P’ € AX Pareto This result underscores the critical limitation of relying on utility-
dominates another policy P € AK with respect to the fairness metrics based Nash welfare as a default fairness benchmark. While Nash
(PF, EF, UF) if PF(u*,P’) > PF(y*,P), EF(y*,P’) > EF(y*,P), welfare is widely used because it balances efficiency and inequality,
and UF(p*,P') > UF(y*, P), and at least one of these inequalities it imposes an outcome-centric criterion that does not preserve equal
is strict. representation in the decision-making process. The implication here

is clear: there is no universal one-size-fits-all fairness metric. Treat-

We consider a benchmark policy which maximizes the utility- ing Nash welfare as sufficient effectively prioritizes efficiency over

based Nash social welfare. This objective, optimized by the NashUCB equal voice; a normative choice that is often left implicit. On the



other hand, procedural fairness highlights this tradeoff and sacri-
fices outcome-centric utilities to center the decision-making process
itself. Our findings show that Nash welfare is not a neutral baseline.
It is a value-laden standard that sacrifices representation for out-
come efficiency, and its legitimacy is contestable unless we defend
why balancing utilities—rather than ensuring equal voice—should
define fairness.

7 EXPERIMENTS

To understand how our methods work in practice, we conduct ex-
periments on different scenarios and evaluate their performance.
We conduct a full factorial sweep across all described parame-
ters: N € {2,3,4,5,6,7,8,9,10L, K € {2,3,4,5,6,7,8,9,10}, |Fi| €
{1,2,3,4,5,6,7,8,9,10}. We also have 2 settings for favourite arms,
the first where each agent has the same number of favourite arms,
and the second where arms are drawn uniformly at random for
each agent between 1 and |F;|.

Moreover, we generate preference orderings using PrefVoting
[8]. We use the uniform, single-peaked [4], impartial culture [7],
and Mallows [13] distributions with ¢ € {0.01,0.25,0.5,0.75,0.99}.
Then, for each agent, we generate K reward means using a ' (0.5, 0.25)
distribution, and assign the highest reward value to the top-ranked
arm, the second-highest to the second-ranked arm, and so on, in
descending order of rank. Each agent has its own mean for each
arm, and each arm for each agent may not have the same reward
mean as the others. We use a seed of 42 for this experiment. We
filter out combinations that are not possible (like where |F;| > K).

This results in 7,776 different experiment settings. This experi-
ment takes just under 10 minutes on an M2 Pro chip. Note that this
experiment setup does not “explore” the bandits, it’s simply finding
the optimal policy given each notion of fairness or algorithm. We
consider the following notions of fairness/algorithms: procedural
fairness, equality fairness, utilitarian fairness, NashUCB [9], and
Generalized Gini Index (GGI) [2].

Table 1 shows the numerical results of the different algorithms in
our experiment. As expected, procedural fairness yields perfect pro-
cedural fairness scores (as the algorithm is inherently designed to
do). More importantly, however, is that it achieves the best balance
across these three fairness metrics. On the other hand, optimizing
for fairness notions that are not procedural fairness leads to sig-
nificant drops in procedural fairness, indicating that it is difficult
to incidentally satisfy without explicitly optimizing for it. Figure 1
illustrates this point. Each coloured dot shows the average fairness
score for an algorithm across all settings (with the blue dots mark-
ing procedural fairness scores). Another interesting finding is that
while procedural fairness does not perfectly satisfy the other two
fairness notions, it achieves high fairness scores with low standard
deviation. On the other hand, algorithms other than procedural
fairness perform poorly on the procedural fairness metric and have
significantly larger standard deviations, indicating that optimizing
for equality or utility maximization does not inadvertently optimize
for equal voice and is quite unstable in outcomes.

7.1 Real World Example

To illustrate a real-world example, we pull a dataset from PrefLib
[15], notably the Mechanical Turk Dots dataset [14], specifically the

PF Score EF Score UF Score
PF Policy 1.00 £ 0.00 0.98+0.02 0.97 +0.05
EF Policy 0.66 £0.31 1.00+0.00 0.84 +0.13
UF Policy 0.78 £0.27 0.96 £0.05 1.00 +0.00
NSW Policy 0.82+0.23 0.97 +£0.03 1.00 £ 0.01
GG Policy 0.70 £0.28 1.00 +0.00 0.87 +£0.11

Table 1: Performance metrics for each algorithm. Reported
as mean + one standard deviation. Rows denote algorithms’
optimal policy, columns denote fairness scores.

variant with 800 voters and 4 candidates. In this dataset, Mechanical
Turk workers were shown images of dots and were asked to rank the
images from fewest to most dots, producing elections with around
800 voters over 4 candidates. We chose this data because it provides
complete preference orderings over a small set of alternatives (K =
4), making the experiment tractable and easy to interpret. This
dataset then allowed us to create a non-trivial bandit instance and
demonstrate the procedural fairness algorithm running on it to
learn the optimal policy. For simplicity and speed, we sample 50
votes from the 800 uniformly at random. We generate the bandit
by setting an agent’s first choice as 0.9, their second choice as 0.63,
their third choice as 0.37, and their last choice as 0.1. We then
calculate each algorithm’s optimal policy and score them using our
three fairness metrics, as can be seen in Figure 2.

We also run our learning algorithm for procedural fairness on
this dataset. Since each reward must be within 0 and 1, we use a
Beta distribution. We fix the standard deviation at 0.1 for all agents,
and solve for alpha and beta given the standard deviation and mean.
We set y = 0.7, @ = 1, and run for 100, 000 steps. Figure 3 shows
the progression of the fairness scores as the algorithm learns a
procedurally fair policy, and the evolution of the policy over time.

8 DISCUSSION & CONCLUSIONS

8.1 Fairness as Legitimacy

As established, fairness in multi-agent systems has too often been
reduced to outcomes over procedure. It is easy to understand why:
these are elegant and simple to compute measures. Nonetheless,
these are values imposed from the outside. When fairness is defined
by an external hand, it risks being viewed as illegitimate.

Procedural fairness offers us another path: a path of respecting
the dignity of equal participation and influence in the decision-
making process. It does not ask which balance of outcomes is most
ideal, but how the decisions are made and who influenced them.
This principle is not novel. It is the same principle that gave us the
Magna Carta, that sustains constitutions and democracies centuries
later, and is backed up by evidence as being preferable [1, 12, 24].
Such systems endure not because they guarantee optimal outcomes,
but because the participants recognize the legitimacy of the deci-
sions made. This is what allows them to last.

For multi-agent decision-making, this means changing the design
of systems from asking “what distribution of rewards is best?"
to “whose preferences shaped the decision?" When we focus on
centering the voice of the agents and ensuring fair process, we
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(a) The procedural fairness algorithm’s fairness scores over time. The
shading indicates 1 standard deviation with a rolling average of 1000
steps.

Policy Evolution Over Time for Procedural Faimess (1000-step Rolling Average)
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(b) The procedural fairness algorithm’s policy over time. The shading
indicates 1 standard deviation with a rolling average of 1000 steps.

Figure 3: Comparison of procedural fairness algorithm’s performance over time: (a) fairness scores, (b) policy evolution.

move away from normative judgements that impose values from
the outside, towards systems that agents regard as legitimate and
more accurately reflect what humans view as preferable.

8.2 Tradeoffs as Design Choices

What it means to be fair has never been a unifying principle. It
is a contest of rival claims, philosophies, and moral visions, each
irreconcilable with the others. This paper makes this blunt claim:
no system can satisfy all fairness criteria at once, and every fairness
choice declares a normative judgment. To choose one is always to
forsake another.

This is not a defect in our framework, in fact, anything but. This
is the human condition. Fairness is not discovered in equations,
but declared in values. To make decisions on behalf of a group
therefore requires us to choose: whose values will govern? Whose
interest will reign supreme? The designer’s, or the agents’ expressed
through equal voice?

Historically, we have relied on external metrics to account for
fairness: efficiency, equality, or some balance of these two. But
elegance and simplicity is not legitimacy. Procedural fairness does
not erase tradeoffs; it exposes them, and insists that no agent is
denied representation in the decisions that shape their fate.

8.3 Robustness of Procedural Fairness

While procedural fairness is not only normatively appealing, it
is also game-theoretically robust. We showed that procedurally
fair solutions lie in the procedural core, meaning that no set of
agents has an incentive to deviate. In other words, these policies are
stable against defection precisely because each agent is guaranteed
equal representation in the decision-making process. Moreover,
our empirical results demonstrate that procedurally fair policies
consistently achieve a strong balance between different fairness
metrics, more so than other notions of fairness. Procedurally fair
policies do not always maximize utility or equality; they perform
well across contexts, avoiding extreme inefficiencies. In fact, while
procedural fairness seems to inherently lead to relatively efficient

and equal outcomes on its own, no other notion of fairness preserves
equal voice in any meaningful way.

Taken together, these properties mark procedural fairness as
more than a normative principle. It is a design principle that yields
legitimacy, stability, and resilience. In a field where agents must
not only cooperate but endure, procedural fairness stands as the
strongest baseline for multi-agent systems.

8.4 Broader Applications of Procedural Fairness

One of the most important points of this paper is that procedural
fairness is not confined to the abstract setting of multi-agent bandits.
It appeals to a greater idea that legitimacy turns less on the outcome
achieved than on the process by which it was reached.

Participatory budgeting offers one of the clearest illustrations.
Communities routinely accept allocations that are neither max-
imally efficient nor perfectly equal. Yet, these processes endure,
and do so because they give every participant a voice. Legitimacy
is preserved, not because the allocation is ideal, but because the
decision is shared.

Such a takeaway must not be forgotten for artificial systems.
Whether it be allocating computational resources, governing plat-
forms, or coordinating autonomous agents, the critical question
is not what was decided, but how. To embed procedural fairness
into multi-agent systems is therefore not to borrow a human tra-
dition for symbolic value, but to ensure that the systems we build
today and tomorrow reflect not only intelligence, but humanity’s
enduring commitment to fairness through equal voice.

8.5 Future Work

There are many directions to which this work may lead. This paper
has focused on bandits, but the framework and idea behind pro-
cedural fairness is general and can be extended further. One clear
direction is to adapt these ideas into richer, sequential settings such
as multi-agent reinforcement learning. Another important direction
is experimental validation with human experiments. While past
work and our experimental results demonstrate that democratizing



multi-agent bandits achieves balanced performance on different
notions of fairness, the ultimate test here lies in perception. Investi-
gating how people react to procedurally fair outcomes compared to
outcome-based policies could provide valuable evidence of its prac-
tical relevance, particularly in settings where trust is an essential
requirement for human adoption.
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A EXAMPLES
A.1 Fair Policies

Consider a multi-arm multi-agent bandit setting with N = 3 and K = 2, and the following reward structure:
1 0
p=|(1 0
0 1

In this scenario, for procedural fairness, agents 1 and 2 would place their % probability mass on the first arm, and agent 3 would place

their probability mass on the second arm. This results in a policy of (%, %) An equally fair policy would be P = (%, %), as each agent’s

expected utility from such a policy would be 0.5. A utilitarian policy would be P = (1,0), as the leftmost arm has an overall utility among all
agents of 2, where the rightmost arm has an overall utility of 1 among all agents.

A.2 Procedural Score

To illustrate, consider the utility matrix
1 0
p=11 0
0 1

and policy P = (%, %) We aim to find y;; for each agent i and arm j, distributing each agent’s % share of the total probability mass to their
favourite arm without exceeding any arm’s total availability in the policy P = (%, %)

Agent 1 prefers arm 1. Allocate their full share: y;; = %, Y12 = 0. Then, agent 2 also prefers arm 1. Since % is already used by agent 1 with
arm 1, only % remains (recall that y;; + yp1 < % must hold, and we already have % + Yy < % from agent 1 allocating their decision share to
arm 1). So: yp1 = % Y22 = 0. Finally, Agent 3 prefers arm 2. We can fully allocate their decision share to arm 2, so: y3, = % y31 = 0. Summing
all y;; gives g the procedural fairness score. This reflects agent-level allocation ratios of 1, 0.5, and 1, averaging to g

B THEORETICAL RESULTS
B.1 Hoeffding Mean Concentration

LEMMA 1 (HOEFFDING MEAN CONCENTRATION). Let zi = [ﬂni#t), where ni represents the number of times arm k has been pulled by
k

timestep £. Then, with probability at least 1 — we have that Vi € Jk € et |, —u | £z
p ¢. Then, with probability at | have that Vi € [N].k € [K1,€ € [£] : |, — 4}, < 20

2
(NK1)3’

Proor. This proof is nearly identical to an existing proof [9]. Consider a fixed timestep t. Let Xl.[k be the set of observations of arm k at

timestep ¢, so /i’ is equal to the mean of all Xz‘t:k sets (separately, as a matrix of means). So |X£k| = ni Further, let z;; = [% Recall

each reward x € [0, 1]. Then, by Hoeffding’s inequality followed by a union bound, we have:

Vi e [N], k € [K], £ € [t] :P‘ S x -l

¢
xexi,k

e | CAr 0ok ot
> M| = P(lnk'ui,k Mickie| > nkzk)

= P(1t) - kil > 24)
— £ 0\2
< 2exp(ij>)
3
=2 exp(—Zni(zz)z)

[2mm(NKt) \?
=2exp(—2n]‘;( %)

= 2exp (—4In (NKt))
2
= (NKp)*



By the union bound, we get
Pr[3ie NLke KL eeltl: il —pl>2]< > > > (NKt)4
i€e[N] ke[K] te[t]

_ 2NKt 2
T (NKt)* ~ (NKt)3 '

Taking the complement, we get

. 2
Pr[Vze[N],ke[K] fe |[llk :”zk|<zk] > 1—m.
O
B.2 Uniform-in-Time Hoeffding Mean Concentration
COROLLARY 8 (UNIFORM-IN-TIME HOEFFDING MEAN CONCENTRATION). Fix a horizon T. Then
3
. At * {
Pr(Vt ST Vie[NL ke[Kl, e<t: [il, -l < zk(t)) > 1= e
PRrROOF. By the preceding lemma and union-bounding over t = 1,..., T,
2w L
. nt * £
Pr(Vt ST Vie[NL ke[Kl e<t: [il, -yl < zk(t)) > - W
Applying the integral bound for decreasing functions,
o 1 T 3_ 1
D 3 xdx =5 - g,
=1
Pr(Vt<T,Vie [N], ke [K|, e<t: |t —p | <zi(t)) = -2 _(3-1) s 1o
rnvi= 4, vi > s ES L g = Higl = 2 = (NK)ps\2 ~217) = (NK)3
O

B.3 Randomized Exploration Bound

LemMa 2. If at round t the procedural fairness algorithm explores with probability p . = t=(=Y), then the total number of exploration
rounds up to time T is given by:

T T 1
D Phana = 2t =0T
=1 =1

And since each exploration round can incur at most one mismatch, then the total mismatches coming from forced exploration is bounded by
o( iTY).

ProoF. This can be easily shown via an integral: ¥7_ pt =31 01 <1+ f =1+ % = @()%TY) m|

rand

B.4 Arm Counts and Adjustment Bounds

LemMMA 3. If at round t the procedural fairness algorithm explores with probability p* = t=U=Y), and selects an arm uniformly at random,
then we know the following:

(1) Eln] 2 % S4o plong = QR
@) nf = (%)

(3) 2L = \/zln(JZKz) _ O(\/}/Klnt(yNKt)) S0

n

ProoOF. We can see by construction that E[nli]

E[n{] = Ly pmnd = Q(}f—;) This result also provides, using a Chernoff bound:

- ! ng- From Lemma 2, we know that Sopt =01 TY) so it follows that

rand

Prln < $ 51| < exp=} Bln) = exp-0( ).

With high probability, we have that:



tY
&)

Therefore, we have that nltc = Q()f—IY() which dominates Int with 0 < y < 1. Because of this, we then have z}i = Zln(n#t) =
\ k

O( w) Since t¥ dominates yK In (NKt), we can see that as t — oo, the latter two bounds approach 0, completing our proof.

B.5 Exploitation Phase Bound

LEMMA 4. Define a mismatch to refer to a step where the actual favourite arm set does not equal the estimated favourite arm set for at least
4(1+a)?yK In (NKT) ;
I ve—

min

one agent. In the exploitation phase, the number of mismatches is bounded by O([

PrOOF. Let F; represent agent i’s actual favourite arms set, and let j* € F; and k ¢ F;, and A = A; j» > 0, where A; j« x = “zj* - sz (in
the case where every arm is a favourite arm, the problem is trivial). Let j € arg max; yf ; bean estimated favourite arm for agent i. In order
for an arm k to remain in the favourite arm set, we must satisfy the following condition: ﬁ;k +azg 2 ,uf i~ oczjt. (note that j* may or may not
be the same arm as j). Thus, we want to find at what timestep ¢, the following will be true: if, + az; < fif ; — a2}

We know, by definition, that ,uf = ﬁf j+» @s J represents the arm that has the empirically highest mean at time ¢, so the estimate is at
least as high as j*’s estimate. This provides a lower bound to the right-hand side of our equation. We can then use the more conservative
exclusion inequality fif + az; < fif s max{z’, z]’.* }. We can replace our other inequality with more conservative inequalities, as we are
simply looking for an upper bound. If we replace our inequality with a more conservative inequality, then we know that if the conservative
inequality is satisfied, then the original inequality is satisfied.

From Lemma 1, we know with high probability that ﬁf e S yzk + z,’(, providing an upper bound to the left-hand side of our inequality. We
can then use the new, more conservative exclusion inequality ,uzk + z,’c + az,’( < ,uf s max{z} z;* }. By the same Lemma, we also know
that ﬁf 2 H; I z;* > ”Zj* - max{z;, Z}F }. Similarly, we have a new lower bound for our right-hand side, so we can replace our exclusion
inequality with y7, + z +az; < H e = max{z;, zj.*} - amax{z;, z;.*}. Rearranging and factoring gives: A; jx > (1+ a)(z} + max{z;., z;* b.

For our bound, we are primarily concerned with the smallest A, so we use A, := min;e[n] minjer, minggr, (y;‘j - y;‘k) > 0, and our
inequality becomes Apin > (1 + @) (2, + max{z;., zj.*}).

yKIn (NKt)
tYy

From Lemma 3 (with high probability via a union bound), we know that thc =0( ). So for any k and j*, there exists some

constant C such that zl‘; + max{z}, z;.*} < 2C4/ w We can then find the threshold time by solving Apin > (14 @)2C4/ w,

Then, since t < T and In (NKt) < In (NKT), we can use T in our inequality, making it A,in > (1 + @)2C+/ w

Solving, we get:

4C?(1+ a@)?yKIn (NKT) | 1
> = ik

min

Thus, we can conclude that the exclusion inequality will be true when the above inequality is true, thus proving our bound. For simplicity,
we exclude the constant C from our bound, providing the final regret bound for the exploitation phase:

(1+ a)?yKIn (NKT) .1

o(l 17)
Afnin
By Corollary 8, Lemma 1 holds simultaneously for all ¢ < T with probability at least 1 — (N3—K)3 Therefore, the above regret bound holds
uniformly across the entire horizon with high probability. O

B.6 Full Procedural Fairness Regret Bound
ProoF. Let F; represent agent i’s true favourite-arm set under the true means p*. At round ¢, the algorithm uses the estimates, /i, and

z = lzmﬁl#t) for arm k at some timestep ¢, and n;, represents the number of times arm k has been pulled by time ¢.

k

Additionally, let A; ;. = ,uzj - '”:k > 0iff k ¢ F; for any j € F; and k ¢ F;. Let Ay, = min jer, kgr, Aijx 2 0. Note A,y is only 0 if all
agents are indifferent between all arms, that is, |F;| = K for all agents i, in which case the problem is trivial for that agent. We also have
Fp={k:fl +az > fij; —az}}, where j = argmax; ji] ; for some agent i.

In our setting, we define regret to refer to the number of mismatches. Specifically, we count a mismatch at time ¢ if 3i : F;(¢) # F;. Thus:



T

T T
R(T) = Z 1{3i: F(t) £ F;} < Zpiand + Z(l —pﬁand)l{ﬁ,-(t) # F; during non-random steps}

t=1 t=1 t=1
————

(@)

From Lemma 2, we have that part (a) has the bound O(TTY), and from Lemma 4, we have that part (b) has bound O( [

Using part (a) and (b) together, we have our final regret bound:

(1 + a)?yK In (NKT)

(b)

R(T) =0(T") + O([

B.7 Procedural Fairness Guarantees

AZ

17)

min

(1+a)2yAIZ<1n (NKT) 1 ;)'

min

Proor. The highest amount of utility an agent could achieve is if all probability were placed on their favourite arm. Since the procedural
fairness policy guarantees each agent at least 1/N probability on their favourite arm, each agent receives at least 1/N of their maximum
achievable utility in expectation, thus giving them a proportional share. This is similar to the concept of proportionality [5]. O

B.8 Fractional Pull Bound

LEmMMA 5 (FRACTIONAL PULLS). Suppose z; = Zlngl#t), then for either the Equality Fairness or Utilitarian Fairness algorithm:
' k

T K
Z Zp,i z = O(\KT In (NKT)).

=1 k=1

ProoF. Let I} be 1 if arm k is pulled at timestep ¢, otherwise 0. We want to find a bound for E[X],

By definition, we have:

32 2ot < o 35

We want to bound E[ Z k=1 \/»
t—1 t 1
e =ng o I \/» = .

t
We know, by definition, that E[I{ |arm pull history] = Pi

=p! . SoE
Py S0 [\/n}’ci’l]

Therefore, Zthl

Because n!

If 1
n;(_l

bound ]E[Z[T=1

Consider the term Y.1_,

t 1

Summing over K, we get ZtT:1 Zf 1

\/7 <23K, k.

Now we must bound Zle A lnz and then multiply it by the original In term, and we have our final bound.

t
K Py <
k=1 T, =

V%

t=1 k=1 n

N

T Kk _Pi
t=1 2uk=1 o
V%

1
t-1
V%

. We can reindex the summation and convert into an integral to get a bound:

<1+/ \/_dx<2\/7

k 1

E[If|arm pull history]] =

I

n

t

k

2In (NKt) ]
o3

— |, making our new
k

Consider the Cauchy-Schwarz inequality: (Z akb)? <3 ai 2k bIZC. Applying this to our situation gives us: Zle +/nL < VKT.Combining

] < 2VKT.

our prior results, this gives: E[ Y1 I,

F

Putting it all together, this gives us:



T K T K t
E[Z pr M] <+2In (NKT)E[Z Z p" ] < v2In (NKT) - 2VKT = 24/2KT In (NKT) =
=1 k=1 g n

t=1 k=1

B.9 Equality Fairness Bound

O(KTIn (NKT))

Proor. Recall that y* are the true reward means and /i’ are the estimated reward means at timestep ¢, and that the regret at timestep ¢,
is represented by r; = f(p;, u*) — min, f (p, u*). The total regret over T timesteps is represented by RT = Zthl r;. From Lemma 1, we have

Ntk t —
“’zk kl < z;. Assume a = 4.

Now, we want to establish that | f(p, 2*) — f(p, p*)| < 4 3K k=1 PkZ- Let u; represent the expected utlhty of agent i under the actual means
#* and some policy p, and let u represent the expected utility of agent i under the estimated means /" and the same policy p. Then, by the

Lipschitz bound and triangle inequality we have:

F(p. 1) = f(po )] = N(N Z(ul wp)? = ) (i — )

i<j

N(N NV 2wt - @ )]
i<j

SN(N—I)ZZKMI_ ; —(u:—u;)|
i<j

SN(N 1)Z|ul u|+|u]—u|

i<j
Then, since every index appears exactly N — 1 times, we have that

Zl”l u|+|uj—u]|<(N—l)Z|u,—u|

i<j

Which gives us that | f(p, i') = f(p, u*)| < % 3 |ui - u:|

Now, by definition of u;, we know that u; — u] = Zle ey — ﬁfk) and therefore |ui - ul’\ < Zf:l Pk |,u;‘k -

inequality before, we can assume with high probability, that | ﬁf e T Hl S z,’;, so therefore:

K
| — uf] < Zpkz,‘;
k=1

and
N N K K
Dlui—u| <> Pz =N Y ez
=1 i=1 k=1 k=1
Therefore:
(i) = f(p.p)] < —Z|ul |
i<j
4 t
< NNZkak
k=1

K
=4 ), pe
k=1

I k|. From our Hoeffding

Now we show that the total objective is bounded. By definition of p;, we know that f(p:, i*) — a Xi prz; < f(p*, i) — a 3y p;z; Wwhere

p* is the optimal policy (recall that /I is an estimate).
So, we have:

Fpr i) —a ) phak < F(p" 4 —a ) pit
k k

Adding —f (ps, u*) + f(pr, p*) to the LHS and —f (p*, p*) + f(p*, p*) to the RHS and rearranging gives us:



Flpe i) = £ 1) < [F(peo ) = Fpu i+ [F (07 1) = f (0" i) + @ ) phzk —a ) pih
k k
<4 Z pizp +4 Z Pizy +a Z Pz —a Z piz;  (By earlier Lipschitz bound)
k k k k

<(4+a) Z:p,iz,tC +(4-a) Zp,tz,i (Set a = 4 to kill the second term)
k k

=8 piat
k

Since RT <8 Y1 le prz. =8 Zle H p}.2;. wenow find abound on Zle > p}.z;.» which from Lemma 5 we know is O(yKT In (NKT)),
thus completing our proof. O

B.10 Utilitarian Fairness Bound
ProOF. Let My = 2N, ;o M* = maxg Mg, Ay = M*—Mj. At round ¢, the algorithm chooses a distribution p’ by solving max, Y px (]\’/Li +

azp), M/ﬁ =N ik z, = [%}Zm) where the regret at time ¢ is defined as r, = M* — ¥ p M, and total regret is Ry = ST r:. Assume

a>N.
By Lemma 1, we have with high probability that |]\71£ - Mi| < Nzi.
By definition, at round ¢, the algorithm selects a distribution such that ¥, p; (AZ,E +azp) > M/ﬁ* + az}., where k* is the actual best arm

under the true means. Let 1\7112 = My + ¢, where ¢} := A7I,i — M. From earlier we have that |¢} | < Nz}. This gives us:

PV + azh) = )" p(Mf + azf)
k k

Where p* is an optimal policy. Rearranging this equation gives:

DM = Y pkME = Y M (p = p) ()
k k k
<a Zp,iz,‘; - Zp,tz,’c) )
k k
= a(D; - D;) 3)

With D, = ¥ pz; and D} = Y pjz;.- Recall that regret is defined as r, = M* — ¥ p; My, expanding gives us r; = Y py My — X py My =
2 My (py = pp)-
By definition, we have that My = M{ — €/, so plugging in we get:

re = ; M(p; ~ pp) @
= ;(Mi &) (P = pp) 5)
=;@@-w-;%ﬁwp ©
<a(D; - D}) - zk] et (pr — pp) ()

Recall that |e[ | < Nz} by Lemma 1, so we have that | X €, (p; — p)| < X lecl1(p; — pp)| < X Nzi|(pf = pp)1-
Since p; and p; and always at least 0, we have that |p; — pi| < p; + p;. This gives: 3 Nz¢ |(p; — pi)| < Xk Nzj (p; + pp) = N(D} + Dy).
Putting it all together, we have:



re <a(D; = D;) = ) et(pi — pf) ®)

k
<a(D;=D;) + | et(pp —pp) ©)
k
< a(D; - D;) + N(D; + D;) (10)
=(N+a)D; + (N — a)D; (11)

Set @ > N to drop the second term, leaving us with r; < (N + @)Dy = (N + a) Xy p; 2t

Summing over all t, we get Ry = >1_ r, < (N+a) X1, S p}.z;.- From lemma 5, we know that E[XL, Sk prz;] = O(YKT In (NKT)),
therefore, E[Rr] = O((N + a)+/KT In (NKT)), our desired bound.
m]

B.11 Procedural Fairness and Equality Fairness Impossibility

Proor. Consider a simple setting with two agents and two arms with rewards:
M o
F=1o 1
where M > 1. Under procedural fairness, each agent must allocate % probability to their preferred arm, yielding policy P; = ( % %) with

expected rewards of %’I and % for the two agents. This creates a utility disparity that grows with M.

M
M+1

probability to arm 1, significantly less than the  required by procedural fairness when M is large. As M — oo, the procedural fairness score
approaches zero.
Therefore, no policy can simultaneously satisfy both fairness criteria for all reward structures. O

For equality fairness, we require equal expected rewards, which is achieved by P, = (ﬁ ). However, this allocates only ﬁ

B.12 Procedural Fairness and Utilitarian Fairness Impossibility

Proor. Consider a simple setting with two agents and two arms with rewards:
M o
F=1o 1
where M > 1. Under procedural fairness, each agent will allocate % probability to their preferred arm, which will yield P; = (% %) with
expected rewards of %4 and % for the two agents and an expected total utility of @ However, the policy P, which maximizes overall utility
and satisfies perfect utilitarian fairness would be P, = (1,0) which would result in an expected total utility of M. However, M > M for all

values of M > 1, leading to a disparity.
]

B.13 Utility-Based Nash Welfare Not In Procedural Core

Proor. We prove this through a counter-example. Consider a setting with two agents (N = 2) and two arms (K = 2). The reward matrix

1 0.99
Il =
0 1

Agent 1’s favourite arm is arm 1, and Agent 2’s favourite arm is arm 2. We will now find the distribution over arms that maximizes the
utility-based Nash welfare.
Let p, be the probability of pulling arm 2 and p; = 1 — p, be the probability of pulling arm 1. Then:

Agent 1’s expected reward:  uy(p1,p2) =1-p1+0.99 - p2 = p1 +0.99 pa,
Agent 2’s expected reward:  up(p1,p2) =0-p1 +1-p2 = pa.

Utility-based Nash Welfare (the product of expected rewards) is

(pr+099p2) - po = (p1) p2 +0.99 5

Since p; = 1 — p,, this equals
(1= p2)pz +0.99 p2 = py — p2 +0.99 p2 = py — 0.01 p?.



Taking the derivative:
d 2
d—pz(pg —0.01p3) = 1 — 0.02p,.

On the interval p, € [0, 1], this derivative never vanishes (it is 1 — 0.02 p, > 0 for all p, € [0, 1]). Hence the function is strictly increasing
over [0, 1], with its maximum at the boundary p, = 1.
Thus the unique maximizer of utility-based Nash Welfare is

(p1,p2) = (0, 1).

We can now show that this distribution is not in the procedural core. Under (0, 1), the procedural utility of an agent is the total probability
on that agent’s favourite arm(s). Thus:

uf((0,1)) =p1 =0

™ ((0,1) =p2 =1
We can look at the single-agent coalition C = {Agent 1}. By deviating to the distribution (1, 0) (which puts probability 1 on arm 1), Agent 1’s
procedural utility becomes
u?9((1,0)) = 1.
Since % = % we scale this by % to obtain

A P9(0)=1x1=05 > 0=uP*((01).

Hence Agent 1 alone can strictly increase their procedural utility when switching from (0, 1) to (1, 0). By definition of the procedural core,
(0,1) is therefore blocked and cannot be in the procedural core. Thus, the unique distribution maximizing utility-based Nash Welfare in this
instance, (0, 1), is not in the procedural core because a single-agent coalition has a profitable deviation. This shows that the utility-based
Nash welfare maximizing solution is not guaranteed to be in the procedural core. O

B.14 Procedural Fairness Implies Procedural Core

PRroOF. Let x be a procedurally fair policy that maximizes the decision share-based Nash product, namely:

120

i=1 jeF;

for some distribution P = (py, ..., px) € AF Further, let u;(x) represent the procedural utility obtained by agent i under the policy x. In
other words, u;(x) = X jeF, pj-
Suppose, for the sake of contradiction, that some coalition C € N can block x by switching to some other procedurally fair policy y. In
order to block, the following must be satisfied:
C
%ui(y) >ui(x)VieC
with at least one strict equality. Then, let & = lNﬂ and
z=ay+ (1-a)x

Since both x and y fall within the set of policies that satisfy the procedural fairness constraints (each agent places ﬁ on their favourite arms,

and total mass sums to 1), so does their convex combination z. Since we have that %u,—(y) > u;(x), we also have that

u;i(z) = au;(y) + (1 — u;(x) = u;i(x)

with at least one strict inequality. This gives us:

[Ju@ > ] [ut
ieN ieN
because at least one factor strictly increased while all others stayed the same, and we know, by definition, since we are using procedurally
fair policies that no agent will have a utility of 0.
However, x was specifically chosen to maximize [];cn u;i(x), which is a contradiction. Therefore, the procedural fairness policy with
decision share-based Nash welfare tie-breaking is in the procedural core.
m}



B.15 Pareto Incomparability

ProOF. Proof by counterexample. Consider the following utility matrix:

1A 1
S
Where 0 < A < B < 1. Thus, we know for certain that the procedurally fair policy here Ppr = (%, %). Further, we also know that the
utilitarian fair policy would be Pyr = (0,1), as A < B. Thus, the utility-based Nash welfare solution would be Pareto incompatible with the
procedurally fair solution if the probability it places on the rightmost arm is strictly greater than 0.5 but strictly less than 1.
Let p represent the probability we pull the leftmost arm, and 1 — p denote the probability we pull the rightmost arm. Let Pxyw = (p, 1 — p).

Then, for each agent, we have utilities:
Ur(Pnw) =p(A-1) +1

Uz(Pnw) =B+ p(1-B)

Then, to find the optimal utility-based Nash welfare solution, we want to optimize:

f(Pnw) =Ui(Pnw)Ua(Pyw) = (p(A—1) + 1)(B + p(1 - B))
f'(PNw) =B(A-1)+2p(1-B)(A-1)+1-B=0
_ B(2-A)-1
P00 -BA-1)
Let A = 0.4 and B = 0.6, which satisfies our constraints from earlier. Then, p = % and1-p = % > %, but less than 1. We can therefore
derive, that:
PF(Ppp, p) = 1> PF(Pnw, p)
and
UF(PNw, /1) > UF(PPF, [1)

Therefore, neither policy can guarantee Pareto dominance over the other.
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