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ABSTRACT
In the context of multi-agent multi-armed bandits (MA-MAB), fair-

ness is often reduced to outcomes: maximizing welfare, reducing

inequality, or balancing utilities. However, evidence in psychology,

economics, and Rawlsian theory suggests that fairness is also about

process and who gets a say in the decisions being made. We intro-

duce a new fairness objective, procedural fairness, which provides

equal decision-making power for all agents, lies in the core, and pro-

vides for proportionality in outcomes. Empirical results confirm that

fairness notions based on optimizing for outcomes sacrifice equal

voice and representation, while the sacrifice in outcome-based fair-

ness objectives (like equality and utilitarianism) is minimal under

procedurally fair policies. We further prove that different fairness

notions prioritize fundamentally different and incompatible values,

highlighting that fairness requires explicit normative choices. This

paper argues that procedural legitimacy deserves greater focus as a

fairness objective, and provides a framework for putting procedural

fairness into practice.
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1 INTRODUCTION
From the Magna Carta to the words that open constitutions and

charters around the world, we have long understood that dignity

and fairness require more than simply providing a good outcome.

To be fair requires treating each person as an equal, entitled to a

voice in the decisions that govern their lives. Yet, in the multi-agent

systems we build today, this truth is too often forgotten [9–11]. Fair-

ness is almost always reduced to optimizing for a specific outcome:

the sum of utilities, the balancing of welfare, or the smoothing of

inequality, echoing the consequentialist tradition of judging actions

by their aggregate results [22, 23]. While these notions of fairness

may provide elegance and tractability, they miss the very essence

of what we consider to be fair. They consider what is gained by a

set of decisions, not how they were decided. This is an imposition

of values from outside of the system, rather than respecting the

very agency from within.

This paper begins from a new conviction, that fairness in multi-

agent systems must be grounded not in optimal outcomes, but in
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the principle of equal voice. To guarantee this is to honour the

dignity of participation in multi-agent decision-making; to ignore it

is to risk building systems that sacrifice legitimacy, that is, whether

the decisions themselves are perceived as rightful and acceptable,

for the sake of efficiency. This principle reflects a contractualist

view of fairness, which holds that a decision is only legitimate if it

cannot be reasonably rejected by those subject to it [19]. We call

this principle procedural fairness.

This moral insight is not merely philosophical. Extensive evi-

dence in psychology and economics shows that people consistently

value fair process–even if that means outcomes are less than ideal

[1, 12, 24]. For example, Lind and Tyler [12] recount an example

of a woman whose traffic ticket case was dismissed; however, she

still left the courtroom angry because she felt she had compelling

evidence and the judge never heard her argument. In fact, many

people reported feeling the same way, despite being handed the

best possible outcome from the court. This same dynamic appears

in collective allocation systems like participatory budgeting, where

communities not only want good projects but a voice in which

projects are chosen.

Yet existing approaches in multi-agent learning overwhelmingly

reduce fairness to outcomes such as utilitarianism, Nash welfare,

or inequality. While they capture important values, they impose

fairness as an external criterion rather than letting it arise from the

agents themselves. What is missing in the literature is a framework

that gives agents themselves an equal share of decision-making

power. Inspired by Rawls’ notion of pure procedural justice [18], we
formalize procedural fairness in MA-MABs, a framework where

each action (pulling an arm) produces potentially different rewards

for each agent, sampled from potentially different distributions.

This framework naturally captures both the allocation of benefits

and the distribution of decision-making power in a simple and

easy-to-understand way.

To situate procedural fairness, we compare it, both theoretically

and empirically, with two other notions of fairness in multi-agent

systems: equality fairness, where outcomes are distributed so that

agents receive as equal outcomes as possible, and utilitarian fairness:
decisions maximize aggregate welfare, prioritizing total benefit.

Our central claim is that procedural fairness deserves recognition

alongside traditional notions of fairness like Nash welfare, inequal-

ity, and utilitarianism, not as an alternative, but as a principle of

legitimacy. We now outline our main contributions:

• We define procedural fairness formally in MA-MABs, and

compare it to utilitarian, equality fairness, and Nash welfare.

• We prove impossibility results: fairness notions are funda-

mentally incompatible, showing that fairness requires nor-

mative choices.

• We design algorithms for learning fair policies with sublinear

regret guarantees.



• We show that procedurally fair policies lie in the core, en-

suring stability against coalitional deviation.

• We empirically evaluate our methods across a variety of set-

tings, and show that procedural fairness balances efficiency

and equality while preserving legitimacy.

2 MULTI-AGENT MULTI-ARMED BANDITS
Let 𝑁 represent the number of agents in a multi-arm multi-agent

bandit setting, and let K = {1, ..., 𝐾} be the set of arms where 𝐾 =

|K | represents the number of arms. Further, let 𝑃 = (𝑝1, . . . , 𝑝𝐾 )
represent a policywhere each element, 𝑝𝑘 , represents the probability

that arm 𝑘 ∈ K is pulled in any given turn. Note that 0 ≤ 𝑝𝑘 ≤
1,∀𝑝𝑘 ∈ 𝑃 , and that

∑𝐾
𝑖=1 𝑝𝑖 = 1. We, at times, abuse notation and

refer to 𝐾 as the set of arms.

When an arm is pulled, all agents receive some reward drawn

from a distribution. Agents will not necessarily receive the same

reward, and distributions may vary from agent to agent and from

arm to arm. We let 𝜇∗ ∈ R𝑁×𝐾 represent the agents’ true reward

means, where 𝜇∗
𝑖,𝑘

represents the mean reward agent 𝑖 receives

when arm 𝑘 is pulled. Additionally, we let 𝜇𝑡 denote the agents’

reward estimates at time 𝑡 , where 𝜇𝑡
𝑖,𝑘

is the estimate at time 𝑡

of the reward agent 𝑖 receives when arm 𝑘 is pulled. We let 𝜎𝑖,𝑘
represent the standard deviation of rewards agent 𝑖 receives when

arm 𝑘 is pulled. Finally, let 𝐹𝑖 be the set of agent 𝑖’s favourite arms,

𝐹𝑖 = { 𝑗 ∈ K | 𝜇∗𝑖, 𝑗 =max𝑘∈K 𝜇
∗
𝑖,𝑘
} where 𝜇∗𝑖, 𝑗 represents the reward

agent 𝑖 receives when arm 𝑗 is pulled.

In all instances, we assume that each true reward mean is strictly

bounded between 0 and 1, i.e., 0 < 𝜇∗
𝑖,𝑘

< 1, ∀𝑖 ∈ {1, . . . , 𝑁 }, ∀𝑘 ∈
{1, . . . , 𝐾}, and that drawn rewards are in [0, 1].

We next define the following concepts since they are founda-

tional for our framework.

Definition 1 (Utility). The utility of an agent i under a policy
𝑃 = (𝑝1, 𝑝2, .., 𝑝𝑘 ) is defined as the agent’s expected utility 𝑈𝑖 (𝑃) =∑𝐾
𝑘=1

𝑝𝑘𝜇
∗
𝑖,𝑘
.

Definition 2 (Decision Share). The decision share of agent 𝑖
under a policy 𝑃 = (𝑝1, . . . , 𝑝𝐾 ) is defined as the total probability
assigned to the agent’s favourite arm(s): 𝐷𝑆𝑖 (𝑃) =

∑
𝑘∈𝐹𝑖 𝑝𝑘 , where

𝐹𝑖 is the set of agent 𝑖’s favorite arms, defined as 𝐹𝑖 = { 𝑗 ∈ K | 𝜇∗𝑖, 𝑗 =
max𝑘∈K 𝜇

∗
𝑖,𝑘
}.

Definition 3 (Utility-BasedNashWelfare). The utility-based
Nash welfare is defined similarly to [9]:

∏𝑁
𝑖=1

∑𝐾
𝑘=1

𝑝𝑘𝜇
∗
𝑖,𝑘

where 𝑝𝑘 ∈
(𝑝1, ..., 𝑝𝐾 ), which is some policy. This follows the traditional notion
of Nash welfare found in the literature.

Definition 4 (Decision-Share-Based Nash Welfare). Nash
welfare is defined as

∏𝑁
𝑖=1

∑
𝑘∈𝐹𝑖 𝑝𝑘 where 𝑝𝑘 ∈ (𝑝1, ..., 𝑝𝐾 ), which is

some policy and 𝐹𝑖 is the set of agent 𝑖’s favourite arms: 𝐹𝑖 = { 𝑗 ∈
K | 𝜇∗𝑖, 𝑗 = max𝑘∈K 𝜇

∗
𝑖,𝑘
}. In other words, its the Nash welfare of the

agents’ decision shares.

3 RELATEDWORK
Our work draws on a long-standing debate and evidence from

psychology, economics, and political philosophy that one cannot

simply consider the fairness of outcomes, but must consider the

fairness of process. In psychology, Tyler and Lind’s work on proce-

dural justice [12, 24] shows that individuals value having a voice

in decisions and weigh the legitimacy of decisions when decid-

ing whether or not they follow these decisions. Further, empirical

evidence suggests that individuals prefer fair process over opti-

mal outcomes [1]. In political philosophy, Scanlon’s contractualism

[19] and Rawls’ notion of pure procedural justice [18] articulate

legitimacy as whether decision-making rules themselves are justifi-

able. While these ideas are separate from multi-agent learning, we

incorporate these insights into our work.

When it comes to bandits, prior research focuses on arm-centric

fairness, where arms are guaranteed minimum pull rates [16] or

selected based on merit to avoid favoring worse arms [11]. Another

distinct line is online fair division with private rewards, where

sequentially arriving items are allocated to individual agents. Works

like Procaccia et al. [17] and Schiffer and Zhang [20]maximize social

welfare under constraints such as envy-freeness or proportionality

in expectation, learning agent preferences via bandit feedback. This

contrasts with our problem, which is more aligned with a public

good setting since an arm pull may generate rewards for all.

The most analogous setting to ours is MA-MABs with public re-

wards, which captures the result of an arm-pull as an𝑁 -dimensional

reward vector for each agent. However, here too, the focus has

largely been on outcome-based fairness or efficient coordination.

Outcome-focused fairness includes maximizing utility-based Nash

Social Welfare (NSW), either as a product of utilities (𝑁𝑆𝑊𝑝𝑟𝑜𝑑 )

[9, 10] or its geometric mean [26]. Other aggregate outcome met-

rics include the Generalized Gini Index (GGI) [2] or achieving Pareto

optimality in the reward vector space [25]. These methods evaluate

fairness based on the properties of the resulting reward distribu-

tions. Separately, research on MA-MABs with public rewards also

addresses efficient coordination and communication for utilitarian

goals, such as maximizing collective team utility [3].

4 FAIRNESS IN MULTI-AGENT MULTI-ARMED
BANDITS

We formally define three notions of fairness, namely, procedural,

utilitarian, and equality fairness.We couple each of these definitions

with a fairness score that, given some policy, 𝑃 , measures how fair

the policy is under the given fairness criteria. For each notion of

fairness, you can find an illustrative example in Appendix A.1.

4.1 Procedural Fairness
Procedural fairness is the principle that each agent should have

equal influence over how probabilities are distributed across the

arms. Inspired by broader theories of justice (e.g., Rawls), this pa-

per provides the first formalization of procedural fairness in the

multi-agent bandit setting. Procedural fairness is particularly rele-

vant in contexts where the legitimacy of the decision process is as

important as the outcomes it produces. We formalize this notion of

procedural fairness as follows:

Definition 5 (Procedural Fairness). Let 𝑃 = (𝑝1, 𝑝2, .., 𝑝𝑘 )
be a policy and let 𝑝𝑖 =

∑
𝑘 𝑝𝑖,𝑘 be the probability mass allocated

by agent 𝑖 across all of the arms. A policy 𝑃 is procedurally fair if it
satisfies the following conditions:



1. Equal decision-making influence. Each agent 𝑖 ∈ {1, . . . , 𝑁 }
is allocated an equal share of the total probability mass,

∑𝐾
𝑘=1

𝑝𝑖,𝑘 =
1

𝑁
,∀𝑖 ∈ {1, . . . , 𝑁 }, where 𝑝𝑖,𝑘 represents the probability mass that

agent 𝑖 contributes to selecting arm 𝑘 .
2. Preference-based allocation. Each agent assigns their prob-
ability mass to their most preferred arm(s), defined as the set of
arms with the highest mean reward for that agent: 𝐹𝑖 = { 𝑗 ∈ K |
𝜇∗𝑖, 𝑗 =max𝑘∈K 𝜇

∗
𝑖,𝑘
}. If multiple arms achieve the same maximum

expected reward, an agent may distribute their probability mass
arbitrarily among them.

To score a given policy’s procedural fairness, we formulate an

optimization problem. The intuition is: given some probability dis-

tribution, can we allocate
1

𝑁
of probability on behalf of each agent

on their favourite arms, subject to the given policy? The extent to

which we can allocate these decision shares is the procedural fair-

ness score. We define 𝑦𝑖 𝑗 as a decision share variable, representing

how much of agent 𝑖’s decision share is allocated to arm 𝑗 , provided

that arm 𝑗 ∈ 𝐹𝑖 . The optimization, which we will call 𝑃𝐹 (𝜇, 𝑃), is
as follows:

max

𝑁∑︁
𝑖=1

∑︁
𝑗∈𝐹𝑖

𝑦𝑖 𝑗

subject to

∑︁
𝑗∈𝐹𝑖

𝑦𝑖 𝑗 ≤
1

𝑁
∀𝑖 ∈ 𝑁∑︁

𝑖:𝑗∈𝐹𝑖
𝑦𝑖 𝑗 ≤ 𝑝 𝑗 ∀𝑗 ∈ K

𝑦𝑖 𝑗 = 0 ∀𝑖, 𝑗 ∉ 𝐹𝑖

For an illustrative example, please refer to Appendix A.2.

4.2 Equality Fairness
Equality fairness represents equal outcomes, where the policy aims

to give each agent as close to equal expected rewards as possible.

This principle is most useful in contexts where balance across agents

matters more than efficiency or giving each agent equal voice. We

define equality fairness as follows:

Definition 6 (Eqality Fairness). A policy 𝑃 = (𝑝1, . . . , 𝑝𝑘 )
is equally fair if it minimizes inequality in expected rewards among
agents. Formally, the policy 𝑃 is given by:

𝑃 = arg min

𝑝′∈P

2

𝑁 (𝑁 − 1)
∑︁
𝑖> 𝑗

(
𝐾∑︁
𝑘=1

𝑝′
𝑘
𝜇∗
𝑖,𝑘
−

𝐾∑︁
𝑘=1

𝑝′
𝑘
𝜇∗
𝑗,𝑘

)
2

The following formula serves as a measure for equality fairness:

𝐸𝐹 (𝜇∗, 𝑃) = 1 − |𝐷 (𝑃) − 𝐷 (𝑃∗) |,

𝐷 (𝑃) = 2

𝑁 (𝑁 − 1)
∑︁
𝑖> 𝑗

(∑︁
𝑘

𝑝𝑘𝜇
∗
𝑖,𝑘
−

∑︁
𝑘

𝑝𝑘𝜇
∗
𝑗,𝑘

)
2

,

and 𝑃∗ is an optimal fairness policy. This objective captures equality

by penalizing pairwise reward disparities, ensuring that agents

achieve as similar expected utility as possible. Please note that

𝐷 (·) ∈ [0, 1], so 𝐸𝐹 (𝜇∗, 𝑃) ∈ [0, 1].

4.3 Utilitarian Fairness
Utilitarian fairness is the notion of maximizing the overall utility of

the group. This principle is most appropriate in efficiency-driven

domains where aggregate outcomes matter most.

Definition 7 (Utilitarian Fairness). A policy 𝑃 = (𝑝1, . . . , 𝑝𝑘 )
is utilitarian if it maximizes the expected utility among all agents.
Formally, the policy 𝑃 is given by: 𝑃 = argmax𝑃 ′∈P

∑𝑁
𝑖=1

∑𝐾
𝑘=1

𝑝′
𝑘
𝜇∗
𝑖,𝑘

The fairness score for utilitarian fairness is calculated using the

following equation: 𝑈𝐹 (𝜇∗, 𝑃) =
∑
𝑖∈𝑁

∑
𝑘∈K 𝑝𝑘 𝜇

∗
𝑖,𝑘∑

𝑖∈𝑁
∑
𝑘∈K 𝑝

∗
𝑘
𝜇∗
𝑖,𝑘

. This provides a

percentage share of what the policy is achieving with respect to

what can be achieved.

5 ALGORITHMS
We present learning algorithms for the MA-MAB setting, each

optimizing for a specific fairness objective. While each definition of

fairness calls for the optimization of a different objective, Algorithm

1 presents the general learning procedure. In Algorithm 1, each arm

is sampled once, and then it calls a function, OptimizationStep,
which optimizes for the specific objective, for a total of𝑇 −𝐾 steps.

In the end, it returns the learned policy. In the following sections, we

define OptimizationStep for each of our three fairness objectives.

For each fairness type, we also prove regret bounds. Because each

fairness notion optimizes a fundamentally different objective, the

appropriate notion of regret must also be defined relative to that ob-

jective. These cannot be directly compared because the underlying

ideals themselves are different for each notion.

Procedural Fairness Regret. 𝑅𝑃𝐹 (𝑇 ) = ∑𝑇
𝑡=1 1{∃𝑖 : 𝐹𝑖 (𝑡) ≠ 𝐹𝑖 },

counting mismatches between estimated and true favourite-arm

sets. Unlike EF and UF, which are outcome-based and naturally ad-

mit score-gap regrets, PF is process-based. Its correctness depends

on identifying each agent’s favourite set and enforcing equal influ-

ence in the resulting policy. For this reason, we define PF regret in

terms of the number of mismatch rounds in favourite-set recovery,

which is analogous to a mistake-bound criterion.

Equality Fairness Regret. 𝑅𝐸𝐹 (𝑇 ) = ∑𝑇
𝑡=1 [𝐷 (𝑃𝑡 ) − 𝐷 (𝑃∗)], mea-

suring deviation in inequality from the equally fair optimum.

Utilitarian Fairness Regret. 𝑅𝑈𝐹 (𝑇 ) = ∑𝑇
𝑡=1 [𝑈 (𝑃∗) −𝑈 (𝑃𝑡 )], a

more standard version of regret, where𝑈 (𝑃) = ∑𝑁
𝑖

∑𝐾
𝑘
𝑝𝑘𝜇

∗
𝑖,𝑘
.

Please note that all algorithms use 𝐾 arms, 𝑁 agents, rewards

𝜇 ∈ [0, 1]𝑁×𝐾 , policy 𝑝 ∈ Δ𝐾 .

5.1 Procedural Fairness
To learn a procedurally fair policy, we formulate a constrained

optimization problem that ensures each agent allocates an equal

decision share to their most preferred arms. This formulation is

then used in Algorithm 2, which underpins the OptimizationStep
in Algorithm 1. Additionally, recall that 𝜇𝑡

𝑖,𝑘
is the estimated mean



of arm 𝑘 for agent 𝑖 at timestep 𝑡 .

max

𝑝,𝑦

𝑁∏
𝑖=1

∑︁
𝑗∈𝐹𝑖

𝑝 𝑗

subject to

∑︁
𝑗∈𝐹𝑖

𝑦𝑖 𝑗 =
1

𝑁
∀𝑖 ∈ 𝑁 (1)∑︁

𝑖:𝑗∈𝐹𝑖
𝑦𝑖 𝑗 = 𝑝 𝑗 ∀𝑗 ∈ K (2)

0 ≤ 𝑝 𝑗 ≤ 1 ∀𝑗 ∈ K, 𝑦𝑖 𝑗 = 0 ∀𝑖 ∈ 𝑁, 𝑗 ∉ 𝐹𝑖

Constraint (1) ensures that each agent’s total decision share is
1

𝑁
,

while constraint (2) guarantees that each arm’s total probability

equals the sum of decision shares it receives.

When agents have multiple arms, procedural fairness permits

many valid allocations. To resolve this ambiguity, we break ties

by maximizing decision-share-based Nash welfare. The reason for

using this tie-breaking method is that it has some nice theoretical

properties, which we will discuss later. In simple cases (e.g., when

each agent has a single favoured arm), closed-form solutions exist.

However, in the general case with multiple favoured arms, an LP

formulation is required to preserve the theoretical properties we

study. However, any tie-breaking method will satisfy procedural

fairness on its own. We adopt the LP approach throughout.

When learning the optimal policy, the favourite set is derived

using UCB-style concentration bounds. For each agent, we compare

every arm’s upper confidence bound with the lower confidence

bound of the empirically best arm. Any arm whose UCB overlaps

this lower bound remains in the favourite set. To guarantee conver-

gence, we must ensure that these intervals shrink over time, as we

need the intervals to converge to 0 to recover the true favourite set.

To solve this problem, we select an arm at random with probability

𝑡−(1−𝛾 ) , where 𝛾 ∈ (0, 1) is a decay parameter. This guarantees that

every arm is pulled sufficiently often so that the confidence radius

vanishes as 𝑡 →∞. This is proven in Appendix B.4, Lemma 3.

Theorem 1. With high probability, the regret bound for the Proce-

dural Fairness algorithm, 𝑅𝑃𝐹 (𝑇 ), is 𝑂 (𝑇𝛾 + [ (1+𝛼 )
2𝛾𝐾 ln (𝑁𝐾𝑇 )
Δ2

𝑚𝑖𝑛

]
1

𝛾 ),
where Δmin := min𝑖∈[𝑁 ] min𝑗∈𝐹𝑖 min𝑘∉𝐹𝑖

(
𝜇∗𝑖, 𝑗 − 𝜇∗𝑖,𝑘

)
> 0, and

𝐹𝑖 is the set of agent 𝑖’s favourite arms based on the true means.

Refer to Appendix B.6 for the full proof.

Procedurally fair policies also have additional guarantees with

respect to the total amount of decision share that each agent will

receive:

Observation 1. With any tie-breaking method, the procedural
fairness policy gives agents at least 1/𝑁 of their maximum deci-
sion share and at least 1/𝑁 of their maximum achievable utility, in
expectation.

Please refer to Appendix B.7 for the full proof.

The complexity of the optimization problem is also relevant.

Fortunately, we can easily determine that this problem is convex,

and thus can be solved in polynomial time:

Observation 2. The Procedural Fairness optimization problem is
convex and solvable in polynomial time.

Algorithm 1 LearnPolicy

Require: Fairness method 𝑚𝑒𝑡ℎ𝑜𝑑 ∈ {PF, EF,UF}, Number of

timesteps 𝑇 , Exploration decay parameter 𝛾 if𝑚𝑒𝑡ℎ𝑜𝑑 = 𝑃𝐹 ,

tolerance 𝛼

1: Initialize policy 𝑃0 =
1

𝐾
1𝐾

2: Initialize arm counts 𝑛 = 0𝐾 , and estimates 𝜇 = 0𝑁×𝐾
3: for each arm 𝑘 ∈ K do
4: Pull arm 𝑘 and observe rewards 𝑟𝑖∀𝑖 ∈ 𝑁
5: Update estimates 𝜇𝑖,𝑘 ← 𝑟𝑖∀𝑖 ∈ 𝑁
6: Update arm counts 𝑛𝑘 ← 𝑛𝑘 + 1
7: end for
8: for 𝑡 = 𝐾 to 𝑇 do
9: 𝑃𝑡 ← OptimizationStep(𝜇, 𝑛, 𝑁 , 𝐾, 𝑡, 𝛾, 𝛼)
10: Sample an arm 𝑘 according to 𝑃𝑡
11: Pull arm 𝑘 and observe rewards 𝑟𝑖∀𝑖 ∈ 𝑁
12: Update estimates 𝜇𝑖,𝑘 using incremental mean update

13: Update arm counts 𝑛𝑘 ← 𝑛𝑘 + 1
14: end for
15: return final policy 𝑃𝑇

Proof. Note that the constraints are linear, so the feasible set is

convex. The objective (equivalent to

∑𝑁
𝑖=1 log

(∑
𝑗∈𝐹𝑖 𝑝 𝑗

)
) is concave

(a sum of log-affine terms). Thus we are maximizing a concave

objective over a convex set, which is a convex optimization problem.

Such problems are solvable in polynomial time, and in practice, we

use a standard solver.

□

5.2 Equality Fairness
To learn an equally fair policy in a multi-arm multi-agent bandit,

we balance exploration and exploitation in a UCB-like fashion, also

using an optimization step:

min

𝑝

2

𝑁 (𝑁 − 1)
∑︁
𝑖> 𝑗

(∑︁
𝑘

𝑝𝑘𝜇𝑖,𝑘 −
∑︁
𝑘

𝑝𝑘𝜇 𝑗,𝑘

)
2

− 𝛼
∑︁
𝑘

𝑝𝑘

√︄
2 ln(𝑁𝐾𝑡)

𝑛𝑡
𝑘

subject to

∑︁
𝑘∈K

𝑝𝑘 = 1, 0 ≤ 𝑝𝑘 ≤ 1, ∀𝑘 ∈ K .

The resulting 𝑃 will be the policy that we return to the main

algorithm.

Theorem 2. The regret bound for the Equality Fairness algorithm,
𝑅𝐸𝐹 (𝑇 ), is 𝑂 (

√︁
𝐾𝑇 ln (𝑁𝐾𝑇 )) when 𝛼 = 4.

Please refer to Appendix B.9 for the full proof.

5.3 Utilitarian Fairness
For utilitarian fairness, we use a very similar algorithm to UCB.

The reason for this is that UCB optimizes utilitarian fairness by

trying to find the arm that maximizes overall utility. Thus,

max

𝑝

∑︁
𝑖∈𝑁

∑︁
𝑘∈K

𝑝𝑘𝜇𝑖,𝑘 + 𝛼
∑︁
𝑘

𝑝𝑘

√︄
2 ln(𝑁𝐾𝑡)

𝑛𝑡
𝑘

subject to

∑︁
𝑘∈K

𝑝𝑘 = 1, 0 ≤ 𝑝𝑘 ≤ 1, ∀𝑘 ∈ K .



Algorithm 2 OptimizationStepPF: Procedural Fairness Policy Up-

date

Require: Estimates 𝜇, pull counts 𝑛𝑡 = (𝑛𝑡
𝑘
)𝑘∈[𝐾 ] , number of

agents 𝑁 , number of arms 𝐾 , time step 𝑡 , exploration decay 𝛾 ,

tolerance 𝛼

1: With probability 𝑡−(1−𝛾 ) , select an arm uniformly at random

and return. Otherwise:
2: for each arm 𝑘 ∈ [𝐾] do

3: 𝑧𝑡
𝑘
←


√︂

2 ln(𝑁𝐾𝑡 )
𝑛𝑡
𝑘

, if 𝑛𝑡
𝑘
> 0

+∞, if 𝑛𝑡
𝑘
= 0

4: end for
5: 𝐹 ← {} ⊲ container holding 𝐹𝑖 for all 𝑖

6: for each agent 𝑖 ∈ [𝑁 ] do
7: 𝑗 ← argmax𝑗 ′∈[𝐾 ] 𝜇

𝑡
𝑖, 𝑗 ′ ⊲ break ties arbitrarily

8: 𝐹𝑖 ← { 𝑘 ∈ [𝐾] : 𝜇𝑡𝑖,𝑘 + 𝛼𝑧
𝑡
𝑘
≥ 𝜇𝑡𝑖, 𝑗 − 𝛼𝑧𝑡𝑗 }

9: 𝐹 ← 𝐹 ∪ {𝐹𝑖 }
10: end for
11: Solve the procedural fairness optimization using 𝐹 (and 𝜇) to

obtain 𝑃

12: return updated policy 𝑃

The resulting P is returned to the main algorithm.

Theorem 3. The regret bound for the Utilitarian Fairness algo-
rithm, 𝑅𝑈𝐹 (𝑇 ), is 𝑂 ((𝑁 + 𝛼)

√︁
𝐾𝑇 ln (𝑁𝐾𝑇 )), with 𝛼 ≥ 𝑁 .

Please refer to Appendix B.10 for the full proof.

6 THEORETICAL RESULTS
6.1 Impossibility Results
We show that these different notions of fairness provably conflict,

and that there are instances where one must be prioritized over the

others. These results make explicit that no single policy can be guar-

anteed to satisfy all fairness ideals simultaneously, underscoring

that procedural fairness is not just another outcome-based criterion

but a distinct axis of fairness. These results serve as a motivation

for procedural fairness as a unique, but necessary, definition of

fairness.

Observation 3. For multi-agent multi-armed bandit settings with
𝑁 ≥ 2 agents and 𝐾 ≥ 2 arms, there exist reward structures for which
no policy can simultaneously achieve perfect procedural fairness and
perfect equality fairness.

Proof by counterexample. Please refer to Appendix B.11 for the

full proof.

Furthermore, it is not possible to guarantee perfect procedural

fairness and utilitarian fairness.

Observation 4. For multi-agent multi-armed bandit settings with
𝑁 ≥ 2 agents and 𝐾 ≥ 2 arms, there exist reward structures for which
no policy can simultaneously achieve perfect procedural fairness and
perfect utilitarian fairness.

Proof by counterexample. Please refer to Appendix B.12 for the

full proof.

6.2 Procedural Fairness and the Core
The core is a stability notion originating in cooperative game the-

ory [21]. In the context of public decision-making [6], it represents

a distribution over alternatives (arms) that no coalition of agents

𝐴 ⊆ {1, 2, . . . , 𝑁 } of size |𝐴| would have an incentive to deviate

from, given their proportional share of probability (|𝐴|/𝑁 ). We de-

fine the core in our setting in two ways, considering both utility

(outcome core) and decision share (procedural core).

Definition 8 (Outcome Core). Recall that given a distribution
over arms, 𝑃 , an agent 𝑖’s expected utility is 𝑢𝑖 (𝑃) = 𝑃 · 𝜇∗𝑖 where
𝜇∗𝑖 ∈ R𝑘 is the reward vector for agent 𝑖 . We say a distribution 𝑃 ∈ Δ𝑘
is in the outcome core if there is no coalition of agents𝐴 ⊆ {1, 2, ..., 𝑁 }
and distribution 𝑃 ′ ∈ Δ𝑘 such that |𝐴 |

𝑁
𝑢𝑖 (𝑃 ′) ≥ 𝑢𝑖 (𝑃),∀𝑖 ∈ 𝐴 with at

least one strict inequality.

The procedural core adapts the classic notion of the core in co-

operative game theory to the setting of procedural fairness. Rather

than considering the agents’ expected utility, we consider their

decision share–the total probability mass assigned to the agents’

most preferred arms.

Definition 9 (Procedural Core). Recall that 𝜇 is the reward
matrix. Let 𝐹𝑖 = {𝑘 ∈ K|𝜇∗

𝑖,𝑘
= max𝑗∈K 𝜇

∗
𝑖, 𝑗 } denote agent 𝑖’s

favourite arms. Define a binary vector 𝑋𝑖 ∈ {0, 1}𝐾 for each agent 𝑖 ,
where 𝑋𝑖 [𝑘] is 1 if 𝑘 ∈ 𝐹𝑖 and 0 otherwise. Thus, given a policy, 𝑃 , the
decision share of agent 𝑖 is defined as 𝛽𝑖 (𝑃) =

∑𝐾
𝑘=1

𝑋𝑖 [𝑘]𝑝𝑘 = 𝑃𝑋𝑖 .
Same as the outcome core, a policy 𝑃 is in the core if there is no coali-
tion of agents 𝐴 ⊆ {1, 2, ..., 𝑁 } and distribution 𝑃 ′ ∈ Δ𝑘 such that
|𝐴 |
𝑁
𝛽𝑖 (𝑃 ′) ≥ 𝛽𝑖 (𝑃) ∀𝑖 ∈ 𝐴 with at least one strict inequality.

The procedural core carries interesting implications for our set-

ting, namely, that maximizing utility-based Nash welfare, as pre-

sented by Hossain et al ([9]) does not necessarily lie in the proce-

dural core.

Theorem 4. A utility-based Nash Welfare-maximizing distribu-
tion need not lie in the procedural core.

Proof by counterexample. Please see Appendix B.13 for the full

proof.

Interestingly, probability distributions that are procedurally fair

do, in fact, lie within the procedural core, if we tie break between

an agent’s favourite arms by maximizing the decision-share-based

Nash welfare, as we do when we aim to learn procedurally fair

policies on a multi-arm multi-agent bandit.

Theorem 5. With decision-share-based Nash-welfare maximizing
tie-breaking, the procedural fairness policy is in the procedural core.

Proof Sketch. The intuition behind this proof is that if any
coalition could block the chosen decision-share-based Nash welfare-
maximizing policy, then forming the convex combination of the orig-
inal and deviating policy would strictly increase its decision-share-
based Nash welfare, which contradicts our assumptions, so no such
coalition exists. Please see Appendix B.14 for the full proof.

Additionally, we can see that the procedural core requires proce-

dural fairness.

Theorem 6. Procedural core implies procedural fairness.



Figure 1: Average fairness metrics per policy type. Each column refers to a specific policy maximizing a certain fairness notion,
such as procedural, equality, or utilitarian fairness, maximizing utility-based Nash social welfare, or the Generalized Gini
Index. Each bar represents a score for a fairness type, such as procedural, equality, or utilitarian fairness, and the error bars
represent one standard deviation from the mean.

Figure 2: Shows each fairness notion’s optimal policy scored on the three metrics. Each bar indicates each fairness metric, and
the columns indicate each fairness notion or algorithm’s optimal policy. This graph has no error bars at it is the result from a
single bandit instance (the dataset).

Proof. Consider any coalition consisting of a single agent. This

agent would allocate all probability to their favourite arm. This

would give them a decision share of 1/𝑁 . Thus any distribution in

the procedural core must give any agent at least 1/𝑁 probability

on their favourite arm. Thus it satisfies our definition of procedural

fairness above. □

6.3 Lack of Pareto Dominance Between Fairness
Concepts

We briefly discuss the subject of Pareto optimality. We frame Pareto

optimality in the case of fairness metrics. Specifically, a policy

Pareto dominates another policy if it scores at least as high as

another policy on all three fairness metrics, with at least one strictly

greater. Formally:

Definition 10. Pareto dominance. A policy 𝑃 ′ ∈ Δ𝐾 Pareto

dominates another policy 𝑃 ∈ Δ𝐾 with respect to the fairness metrics
(𝑃𝐹, 𝐸𝐹, 𝑈 𝐹 ) if 𝑃𝐹 (𝜇∗, 𝑃 ′) ≥ 𝑃𝐹 (𝜇∗, 𝑃), 𝐸𝐹 (𝜇∗, 𝑃 ′) ≥ 𝐸𝐹 (𝜇∗, 𝑃),
and 𝑈𝐹 (𝜇∗, 𝑃 ′) ≥ 𝑈𝐹 (𝜇∗, 𝑃), and at least one of these inequalities
is strict.

We consider a benchmark policy which maximizes the utility-

basedNash social welfare. This objective, optimized by theNashUCB

algorithm [9], balances fairness and efficiency by favouring alloca-

tions where all agents receive non-trivial utility. While it doesn’t

account for procedural fairness, it serves as a strong comparator

due to its prominence in the literature.

Here, we show that optimizing for utility-based Nash welfare

does not guarantee Pareto dominance of procedurally fair policies,

and a procedurally fair policy does not guarantee Pareto dominance

of utility-based Nash welfare-optimized policies.

Theorem 7. Utility-based Nash welfare-optimal policies and pro-
cedurally fair policies are not guaranteed to Pareto dominate one
another.

Proof by counterexample. Please see Appendix B.15 for the full

proof.

This result underscores the critical limitation of relying on utility-

based Nash welfare as a default fairness benchmark. While Nash

welfare is widely used because it balances efficiency and inequality,

it imposes an outcome-centric criterion that does not preserve equal

representation in the decision-making process. The implication here

is clear: there is no universal one-size-fits-all fairness metric. Treat-

ing Nash welfare as sufficient effectively prioritizes efficiency over

equal voice; a normative choice that is often left implicit. On the



other hand, procedural fairness highlights this tradeoff and sacri-

fices outcome-centric utilities to center the decision-making process
itself. Our findings show that Nash welfare is not a neutral baseline.

It is a value-laden standard that sacrifices representation for out-

come efficiency, and its legitimacy is contestable unless we defend

why balancing utilities—rather than ensuring equal voice—should

define fairness.

7 EXPERIMENTS
To understand how our methods work in practice, we conduct ex-

periments on different scenarios and evaluate their performance.

We conduct a full factorial sweep across all described parame-

ters: 𝑁 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, 𝐾 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, |𝐹𝑖 | ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We also have 2 settings for favourite arms,

the first where each agent has the same number of favourite arms,

and the second where arms are drawn uniformly at random for

each agent between 1 and |𝐹𝑖 |.
Moreover, we generate preference orderings using PrefVoting

[8]. We use the uniform, single-peaked [4], impartial culture [7],

and Mallows [13] distributions with 𝜙 ∈ {0.01, 0.25, 0.5, 0.75, 0.99}.
Then, for each agent, we generate𝐾 rewardmeans using aN(0.5, 0.25)
distribution, and assign the highest reward value to the top-ranked

arm, the second-highest to the second-ranked arm, and so on, in

descending order of rank. Each agent has its own mean for each

arm, and each arm for each agent may not have the same reward

mean as the others. We use a seed of 42 for this experiment. We

filter out combinations that are not possible (like where |𝐹𝑖 | > 𝐾 ).
This results in 7,776 different experiment settings. This experi-

ment takes just under 10 minutes on an M2 Pro chip. Note that this

experiment setup does not “explore" the bandits, it’s simply finding

the optimal policy given each notion of fairness or algorithm. We

consider the following notions of fairness/algorithms: procedural

fairness, equality fairness, utilitarian fairness, NashUCB [9], and

Generalized Gini Index (GGI) [2].

Table 1 shows the numerical results of the different algorithms in

our experiment. As expected, procedural fairness yields perfect pro-

cedural fairness scores (as the algorithm is inherently designed to

do). More importantly, however, is that it achieves the best balance

across these three fairness metrics. On the other hand, optimizing

for fairness notions that are not procedural fairness leads to sig-

nificant drops in procedural fairness, indicating that it is difficult

to incidentally satisfy without explicitly optimizing for it. Figure 1

illustrates this point. Each coloured dot shows the average fairness

score for an algorithm across all settings (with the blue dots mark-

ing procedural fairness scores). Another interesting finding is that

while procedural fairness does not perfectly satisfy the other two

fairness notions, it achieves high fairness scores with low standard

deviation. On the other hand, algorithms other than procedural

fairness perform poorly on the procedural fairness metric and have

significantly larger standard deviations, indicating that optimizing

for equality or utility maximization does not inadvertently optimize

for equal voice and is quite unstable in outcomes.

7.1 Real World Example
To illustrate a real-world example, we pull a dataset from PrefLib

[15], notably the Mechanical Turk Dots dataset [14], specifically the

PF Score EF Score UF Score

PF Policy 1.00 ± 0.00 0.98 ± 0.02 0.97 ± 0.05
EF Policy 0.66 ± 0.31 1.00 ± 0.00 0.84 ± 0.13
UF Policy 0.78 ± 0.27 0.96 ± 0.05 1.00 ± 0.00
NSW Policy 0.82 ± 0.23 0.97 ± 0.03 1.00 ± 0.01
GG Policy 0.70 ± 0.28 1.00 ± 0.00 0.87 ± 0.11

Table 1: Performance metrics for each algorithm. Reported
as mean ± one standard deviation. Rows denote algorithms’
optimal policy, columns denote fairness scores.

variant with 800 voters and 4 candidates. In this dataset, Mechanical

Turkworkers were shown images of dots andwere asked to rank the

images from fewest to most dots, producing elections with around

800 voters over 4 candidates. We chose this data because it provides

complete preference orderings over a small set of alternatives (𝐾 =

4), making the experiment tractable and easy to interpret. This

dataset then allowed us to create a non-trivial bandit instance and

demonstrate the procedural fairness algorithm running on it to

learn the optimal policy. For simplicity and speed, we sample 50

votes from the 800 uniformly at random. We generate the bandit

by setting an agent’s first choice as 0.9, their second choice as 0.63,

their third choice as 0.37, and their last choice as 0.1. We then

calculate each algorithm’s optimal policy and score them using our

three fairness metrics, as can be seen in Figure 2.

We also run our learning algorithm for procedural fairness on

this dataset. Since each reward must be within 0 and 1, we use a

Beta distribution. We fix the standard deviation at 0.1 for all agents,

and solve for alpha and beta given the standard deviation and mean.

We set 𝛾 = 0.7, 𝛼 = 1, and run for 100, 000 steps. Figure 3 shows

the progression of the fairness scores as the algorithm learns a

procedurally fair policy, and the evolution of the policy over time.

8 DISCUSSION & CONCLUSIONS
8.1 Fairness as Legitimacy
As established, fairness in multi-agent systems has too often been

reduced to outcomes over procedure. It is easy to understand why:

these are elegant and simple to compute measures. Nonetheless,

these are values imposed from the outside. When fairness is defined

by an external hand, it risks being viewed as illegitimate.

Procedural fairness offers us another path: a path of respecting

the dignity of equal participation and influence in the decision-

making process. It does not ask which balance of outcomes is most

ideal, but how the decisions are made and who influenced them.

This principle is not novel. It is the same principle that gave us the

Magna Carta, that sustains constitutions and democracies centuries

later, and is backed up by evidence as being preferable [1, 12, 24].

Such systems endure not because they guarantee optimal outcomes,

but because the participants recognize the legitimacy of the deci-

sions made. This is what allows them to last.

Formulti-agent decision-making, thismeans changing the design

of systems from asking “what distribution of rewards is best?"

to “whose preferences shaped the decision?" When we focus on

centering the voice of the agents and ensuring fair process, we



(a) The procedural fairness algorithm’s fairness scores over time. The
shading indicates 1 standard deviation with a rolling average of 1000
steps.

(b) The procedural fairness algorithm’s policy over time. The shading
indicates 1 standard deviation with a rolling average of 1000 steps.

Figure 3: Comparison of procedural fairness algorithm’s performance over time: (a) fairness scores, (b) policy evolution.

move away from normative judgements that impose values from

the outside, towards systems that agents regard as legitimate and

more accurately reflect what humans view as preferable.

8.2 Tradeoffs as Design Choices
What it means to be fair has never been a unifying principle. It

is a contest of rival claims, philosophies, and moral visions, each

irreconcilable with the others. This paper makes this blunt claim:

no system can satisfy all fairness criteria at once, and every fairness

choice declares a normative judgment. To choose one is always to

forsake another.

This is not a defect in our framework, in fact, anything but. This

is the human condition. Fairness is not discovered in equations,

but declared in values. To make decisions on behalf of a group

therefore requires us to choose: whose values will govern? Whose

interest will reign supreme? The designer’s, or the agents’ expressed

through equal voice?

Historically, we have relied on external metrics to account for

fairness: efficiency, equality, or some balance of these two. But

elegance and simplicity is not legitimacy. Procedural fairness does

not erase tradeoffs; it exposes them, and insists that no agent is

denied representation in the decisions that shape their fate.

8.3 Robustness of Procedural Fairness
While procedural fairness is not only normatively appealing, it

is also game-theoretically robust. We showed that procedurally

fair solutions lie in the procedural core, meaning that no set of

agents has an incentive to deviate. In other words, these policies are

stable against defection precisely because each agent is guaranteed

equal representation in the decision-making process. Moreover,

our empirical results demonstrate that procedurally fair policies

consistently achieve a strong balance between different fairness

metrics, more so than other notions of fairness. Procedurally fair

policies do not always maximize utility or equality; they perform

well across contexts, avoiding extreme inefficiencies. In fact, while

procedural fairness seems to inherently lead to relatively efficient

and equal outcomes on its own, no other notion of fairness preserves

equal voice in any meaningful way.

Taken together, these properties mark procedural fairness as

more than a normative principle. It is a design principle that yields

legitimacy, stability, and resilience. In a field where agents must

not only cooperate but endure, procedural fairness stands as the

strongest baseline for multi-agent systems.

8.4 Broader Applications of Procedural Fairness
One of the most important points of this paper is that procedural

fairness is not confined to the abstract setting of multi-agent bandits.

It appeals to a greater idea that legitimacy turns less on the outcome

achieved than on the process by which it was reached.

Participatory budgeting offers one of the clearest illustrations.

Communities routinely accept allocations that are neither max-

imally efficient nor perfectly equal. Yet, these processes endure,

and do so because they give every participant a voice. Legitimacy

is preserved, not because the allocation is ideal, but because the

decision is shared.

Such a takeaway must not be forgotten for artificial systems.

Whether it be allocating computational resources, governing plat-

forms, or coordinating autonomous agents, the critical question

is not what was decided, but how. To embed procedural fairness

into multi-agent systems is therefore not to borrow a human tra-

dition for symbolic value, but to ensure that the systems we build

today and tomorrow reflect not only intelligence, but humanity’s

enduring commitment to fairness through equal voice.

8.5 Future Work
There are many directions to which this work may lead. This paper

has focused on bandits, but the framework and idea behind pro-

cedural fairness is general and can be extended further. One clear

direction is to adapt these ideas into richer, sequential settings such

as multi-agent reinforcement learning. Another important direction

is experimental validation with human experiments. While past

work and our experimental results demonstrate that democratizing



multi-agent bandits achieves balanced performance on different

notions of fairness, the ultimate test here lies in perception. Investi-

gating how people react to procedurally fair outcomes compared to

outcome-based policies could provide valuable evidence of its prac-

tical relevance, particularly in settings where trust is an essential

requirement for human adoption.
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A EXAMPLES
A.1 Fair Policies
Consider a multi-arm multi-agent bandit setting with 𝑁 = 3 and 𝐾 = 2, and the following reward structure:

𝜇 =


1 0

1 0

0 1


In this scenario, for procedural fairness, agents 1 and 2 would place their

1

𝑁
probability mass on the first arm, and agent 3 would place

their probability mass on the second arm. This results in a policy of ( 2
3
, 1
3
). An equally fair policy would be 𝑃 = ( 1

2
, 1
2
), as each agent’s

expected utility from such a policy would be 0.5. A utilitarian policy would be 𝑃 = (1, 0), as the leftmost arm has an overall utility among all

agents of 2, where the rightmost arm has an overall utility of 1 among all agents.

A.2 Procedural Score
To illustrate, consider the utility matrix

𝜇 =


1 0

1 0

0 1


and policy 𝑃 = ( 1

2
, 1
2
). We aim to find 𝑦𝑖 𝑗 for each agent 𝑖 and arm 𝑗 , distributing each agent’s

1

3
share of the total probability mass to their

favourite arm without exceeding any arm’s total availability in the policy 𝑃 = ( 1
2
, 1
2
).

Agent 1 prefers arm 1. Allocate their full share: 𝑦11 =
1

3
, 𝑦12 = 0. Then, agent 2 also prefers arm 1. Since

1

3
is already used by agent 1 with

arm 1, only
1

6
remains (recall that 𝑦11 + 𝑦21 ≤ 1

2
must hold, and we already have

1

3
+ 𝑦21 ≤ 1

2
from agent 1 allocating their decision share to

arm 1). So: 𝑦21 =
1

6
, 𝑦22 = 0. Finally, Agent 3 prefers arm 2. We can fully allocate their decision share to arm 2, so: 𝑦32 =

1

3
, 𝑦31 = 0. Summing

all 𝑦𝑖 𝑗 gives
5

6
, the procedural fairness score. This reflects agent-level allocation ratios of 1, 0.5, and 1, averaging to

5

6
.

B THEORETICAL RESULTS
B.1 Hoeffding Mean Concentration

Lemma 1 (Hoeffding Mean Concentration). Let 𝑧ℓ
𝑘
=

√︂
2 ln (𝑁𝐾𝑡 )

𝑛ℓ
𝑘

, where 𝑛ℓ
𝑘
represents the number of times arm 𝑘 has been pulled by

timestep ℓ . Then, with probability at least 1 − 2

(𝑁𝐾𝑡 )3 , we have that ∀𝑖 ∈ [𝑁 ], 𝑘 ∈ [𝐾], ℓ ∈ [𝑡] : |𝜇
ℓ
𝑖,𝑘
− 𝜇∗

𝑖,𝑘
| ≤ 𝑧ℓ

𝑘

Proof. This proof is nearly identical to an existing proof [9]. Consider a fixed timestep 𝑡 . Let 𝑋 ℓ
𝑖,𝑘

be the set of observations of arm 𝑘 at

timestep ℓ , so 𝜇ℓ is equal to the mean of all 𝑋 ℓ
𝑖,𝑘

sets (separately, as a matrix of means). So |𝑋 ℓ
𝑖,𝑘
| = 𝑛ℓ

𝑘
. Further, let 𝑧ℓ

𝑘
=

√︂
2 ln (𝑁𝐾𝑡 )

𝑛ℓ
𝑘

. Recall

each reward 𝑥 ∈ [0, 1]. Then, by Hoeffding’s inequality followed by a union bound, we have:

∀𝑖 ∈ [𝑁 ], 𝑘 ∈ [𝐾], ℓ ∈ [𝑡] : 𝑃
©­­«
��� ∑︁
𝑥∈𝑋 ℓ

𝑖,𝑘

𝑥 − 𝑛ℓ
𝑘
𝜇∗
𝑖,𝑘

��� > 𝑛ℓ𝑘𝑧ℓ𝑘ª®®¬ = 𝑃

(��𝑛ℓ
𝑘
𝜇ℓ
𝑖,𝑘
− 𝑛ℓ

𝑘
𝜇∗
𝑖,𝑘

�� > 𝑛ℓ
𝑘
𝑧ℓ
𝑘

)
= 𝑃

(
|𝜇ℓ
𝑖,𝑘
− 𝜇∗

𝑖,𝑘
| > 𝑧ℓ

𝑘

)
≤ 2 exp

(
−2(𝑛ℓ

𝑘
𝑧ℓ
𝑘
)2

𝑛ℓ
𝑘

)
= 2 exp

(
−2𝑛ℓ

𝑘
(𝑧ℓ
𝑘
)2

)
= 2 exp

(
−2𝑛ℓ

𝑘

(√︂
2 ln(𝑁𝐾𝑡 )

𝑛ℓ
𝑘

)
2

)
= 2 exp (−4 ln (𝑁𝐾𝑡))

=
2

(𝑁𝐾𝑡)4



By the union bound, we get

Pr

[
∃ 𝑖 ∈ [𝑁 ], 𝑘 ∈ [𝐾], ℓ ∈ [𝑡] :

��𝜇ℓ
𝑖,𝑘
− 𝜇∗

𝑖,𝑘

�� > 𝑧ℓ
𝑘

]
≤

∑︁
𝑖∈[𝑁 ]

∑︁
𝑘∈[𝐾 ]

∑︁
ℓ∈[𝑡 ]

2

(𝑁𝐾𝑡)4

=
2𝑁𝐾𝑡

(𝑁𝐾𝑡)4 =
2

(𝑁𝐾𝑡)3 .

Taking the complement, we get

Pr

[
∀ 𝑖 ∈ [𝑁 ], 𝑘 ∈ [𝐾], ℓ ∈ [𝑡] :

��𝜇ℓ
𝑖,𝑘
− 𝜇∗

𝑖,𝑘

�� ≤ 𝑧ℓ
𝑘

]
≥ 1 − 2

(𝑁𝐾𝑡)3 .

□

B.2 Uniform-in-Time Hoeffding Mean Concentration
Corollary 8 (Uniform-in-time Hoeffding Mean Concentration). Fix a horizon 𝑇 . Then

Pr

(
∀𝑡 ≤ 𝑇, ∀𝑖 ∈ [𝑁 ], 𝑘 ∈ [𝐾], ℓ ≤ 𝑡 : |𝜇ℓ

𝑖,𝑘
− 𝜇∗

𝑖,𝑘
| ≤ 𝑧ℓ

𝑘
(𝑡)

)
≥ 1 − 3

(𝑁𝐾)3 .

Proof. By the preceding lemma and union-bounding over 𝑡 = 1, . . . ,𝑇 ,

Pr

(
∀𝑡 ≤ 𝑇, ∀𝑖 ∈ [𝑁 ], 𝑘 ∈ [𝐾], ℓ ≤ 𝑡 : |𝜇ℓ

𝑖,𝑘
− 𝜇∗

𝑖,𝑘
| ≤ 𝑧ℓ

𝑘
(𝑡)

)
≥ 1 − 2

(𝑁𝐾)3
𝑇∑︁
𝑡=1

1

𝑡3
.

Applying the integral bound for decreasing functions,

𝑇∑︁
𝑡=1

1

𝑡3
≤ 1 +

∫ 𝑇

1

𝑥−3 𝑑𝑥 = 3

2
− 1

2𝑇 2
,

Pr

(
∀𝑡 ≤ 𝑇, ∀𝑖 ∈ [𝑁 ], 𝑘 ∈ [𝐾], ℓ ≤ 𝑡 : |𝜇ℓ

𝑖,𝑘
− 𝜇∗

𝑖,𝑘
| ≤ 𝑧ℓ

𝑘
(𝑡)

)
≥ 1 − 2

(𝑁𝐾)3
(
3

2
− 1

2𝑇 2

)
≥ 1 − 3

(𝑁𝐾)3 .

□

B.3 Randomized Exploration Bound
Lemma 2. If at round 𝑡 the procedural fairness algorithm explores with probability 𝑝𝑡

𝑟𝑎𝑛𝑑
= 𝑡−(1−𝛾 ) , then the total number of exploration

rounds up to time T is given by:

𝑇∑︁
𝑡=1

𝑝𝑡
𝑟𝑎𝑛𝑑

=

𝑇∑︁
𝑡=1

𝑡−(1−𝛾 ) = Θ( 1
𝛾
𝑇𝛾 )

And since each exploration round can incur at most one mismatch, then the total mismatches coming from forced exploration is bounded by
𝑂 ( 1

𝛾
𝑇𝛾 ).

Proof. This can be easily shown via an integral:

∑𝑇
𝑡=1 𝑝

𝑡
𝑟𝑎𝑛𝑑

=
∑𝑇
𝑡=1 𝑡

−(1−𝛾 ) ≤ 1 +
∫ 𝑇
1
𝑥𝛾−1 = 1 + 𝑇𝛾 −1

𝛾
= Θ( 1

𝛾
𝑇𝛾 ) □

B.4 Arm Counts and Adjustment Bounds
Lemma 3. If at round 𝑡 the procedural fairness algorithm explores with probability 𝑝𝑡

𝑟𝑎𝑛𝑑
= 𝑡−(1−𝛾 ) , and selects an arm uniformly at random,

then we know the following:

(1) E[𝑛𝑡
𝑘
] ≥ 1

𝐾

∑𝑡
𝑠=1 𝑝

𝑡
𝑟𝑎𝑛𝑑

= Ω( 𝑡𝛾
𝛾𝐾
)

(2) 𝑛𝑡
𝑘
= Ω( 𝑡𝛾

𝛾𝐾
)

(3) 𝑧𝑡
𝑘
=

√︂
2 ln (𝑁𝐾𝑡 )

𝑛𝑡
𝑘

=𝑂 (
√︃
𝛾𝐾 ln (𝑁𝐾𝑡 )

𝑡𝛾
) → 0

Proof. We can see by construction that E[𝑛𝑡
𝑘
] ≥ 1

𝐾

∑𝑡
𝑠=1 𝑝

𝑡
𝑟𝑎𝑛𝑑

. From Lemma 2, we know that

∑𝑡
𝑠=1 𝑝

𝑡
𝑟𝑎𝑛𝑑

= Θ( 1
𝛾
𝑇𝛾 ), so it follows that

E[𝑛𝑡
𝑘
] ≥ 1

𝐾

∑𝑡
𝑠=1 𝑝

𝑡
𝑟𝑎𝑛𝑑

= Ω( 𝑡𝛾
𝛾𝐾
) This result also provides, using a Chernoff bound:

Pr

[
𝑛𝑡
𝑘
< 1

2
E[𝑛𝑡

𝑘
]
]
≤ exp

(
− 1

8
E[𝑛𝑡

𝑘
]
)
= exp(−Ω( 𝑡

𝛾

𝛾𝐾
)) .

With high probability, we have that:



𝑛𝑡
𝑘
≥ 1

2
E[𝑛𝑡

𝑘
] = Ω

( 𝑡𝛾
𝛾𝐾

)
.

Therefore, we have that 𝑛𝑡
𝑘

= Ω
(
𝑡𝛾

𝛾𝐾

)
, which dominates ln 𝑡 with 0 < 𝛾 < 1. Because of this, we then have 𝑧𝑡

𝑘
=

√︂
2 ln (𝑁𝐾𝑡 )

𝑛𝑡
𝑘

=

𝑂 (
√︃
𝛾𝐾 ln (𝑁𝐾𝑡 )

𝑡𝛾
). Since 𝑡𝛾 dominates 𝛾𝐾 ln (𝑁𝐾𝑡), we can see that as 𝑡 →∞, the latter two bounds approach 0, completing our proof.

□

B.5 Exploitation Phase Bound
Lemma 4. Define a mismatch to refer to a step where the actual favourite arm set does not equal the estimated favourite arm set for at least

one agent. In the exploitation phase, the number of mismatches is bounded by 𝑂 ( [ 4(1+𝛼 )
2𝛾𝐾 ln (𝑁𝐾𝑇 )
Δ2

𝑚𝑖𝑛

]
1

𝛾 )

Proof. Let 𝐹 ∗𝑖 represent agent 𝑖’s actual favourite arms set, and let 𝑗∗ ∈ 𝐹 ∗𝑖 and 𝑘 ∉ 𝐹 ∗𝑖 , and Δ = Δ𝑖, 𝑗∗,𝑘 > 0, where Δ𝑖, 𝑗∗,𝑘 = 𝜇∗
𝑖, 𝑗∗ − 𝜇

∗
𝑖,𝑘

(in

the case where every arm is a favourite arm, the problem is trivial). Let 𝑗 ∈ argmax𝑗 𝜇
𝑡
𝑖, 𝑗 be an estimated favourite arm for agent 𝑖 . In order

for an arm 𝑘 to remain in the favourite arm set, we must satisfy the following condition: 𝜇𝑡
𝑖,𝑘
+ 𝛼𝑧𝑡

𝑘
≥ 𝜇𝑡𝑖, 𝑗 − 𝛼𝑧𝑡𝑗 (note that 𝑗∗ may or may not

be the same arm as 𝑗 ). Thus, we want to find at what timestep 𝑡 , the following will be true: 𝜇𝑡
𝑖,𝑘
+ 𝛼𝑧𝑡

𝑘
< 𝜇𝑡𝑖, 𝑗 − 𝛼𝑧𝑡𝑗 .

We know, by definition, that 𝜇𝑡𝑖, 𝑗 ≥ 𝜇𝑡𝑖, 𝑗∗ , as 𝑗 represents the arm that has the empirically highest mean at time 𝑡 , so the estimate is at

least as high as 𝑗∗’s estimate. This provides a lower bound to the right-hand side of our equation. We can then use the more conservative

exclusion inequality 𝜇𝑡
𝑖,𝑘
+ 𝛼𝑧𝑡

𝑘
< 𝜇𝑡

𝑖, 𝑗∗ − 𝛼 max{𝑧𝑡𝑗 , 𝑧𝑡𝑗∗ }. We can replace our other inequality with more conservative inequalities, as we are

simply looking for an upper bound. If we replace our inequality with a more conservative inequality, then we know that if the conservative

inequality is satisfied, then the original inequality is satisfied.

From Lemma 1, we know with high probability that 𝜇𝑡
𝑖,𝑘
≤ 𝜇∗

𝑖,𝑘
+ 𝑧𝑡

𝑘
, providing an upper bound to the left-hand side of our inequality. We

can then use the new, more conservative exclusion inequality 𝜇∗
𝑖,𝑘
+ 𝑧𝑡

𝑘
+ 𝛼𝑧𝑡

𝑘
< 𝜇𝑡

𝑖, 𝑗∗ − 𝛼 max{𝑧𝑡𝑗 , 𝑧𝑡𝑗∗ }. By the same Lemma, we also know

that 𝜇𝑡
𝑖, 𝑗∗ ≥ 𝜇

∗
𝑖, 𝑗∗ − 𝑧

𝑡
𝑗∗ ≥ 𝜇

∗
𝑖, 𝑗∗ −max{𝑧𝑡𝑗 , 𝑧𝑡𝑗∗ }. Similarly, we have a new lower bound for our right-hand side, so we can replace our exclusion

inequality with 𝜇∗
𝑖,𝑘
+ 𝑧𝑡

𝑘
+ 𝛼𝑧𝑡

𝑘
< 𝜇∗

𝑖, 𝑗∗ −max{𝑧𝑡𝑗 , 𝑧𝑡𝑗∗ } − 𝛼 max{𝑧𝑡𝑗 , 𝑧𝑡𝑗∗ }. Rearranging and factoring gives: Δ𝑖, 𝑗∗,𝑘 > (1 + 𝛼) (𝑧𝑡
𝑘
+max{𝑧𝑡𝑗 , 𝑧𝑡𝑗∗ }).

For our bound, we are primarily concerned with the smallest Δ, so we use Δmin := min𝑖∈[𝑁 ] min𝑗∈𝐹𝑖 min𝑘∉𝐹𝑖

(
𝜇∗𝑖, 𝑗 − 𝜇∗𝑖,𝑘

)
> 0, and our

inequality becomes Δ𝑚𝑖𝑛 > (1 + 𝛼) (𝑧𝑡
𝑘
+max{𝑧𝑡𝑗 , 𝑧𝑡𝑗∗ }).

From Lemma 3 (with high probability via a union bound), we know that 𝑧𝑡
𝑘
= 𝑂 (

√︃
𝛾𝐾 ln (𝑁𝐾𝑡 )

𝑡𝛾
). So for any 𝑘 and 𝑗∗, there exists some

constant 𝐶 such that 𝑧𝑡
𝑘
+ max{𝑧𝑡𝑗 , 𝑧𝑡𝑗∗ } ≤ 2𝐶

√︃
𝛾𝐾 ln (𝑁𝐾𝑡 )

𝑡𝛾
. We can then find the threshold time by solving Δ𝑚𝑖𝑛 > (1 + 𝛼)2𝐶

√︃
𝛾𝐾 ln (𝑁𝐾𝑡 )

𝑡𝛾
.

Then, since 𝑡 ≤ 𝑇 and ln (𝑁𝐾𝑡) ≤ ln (𝑁𝐾𝑇 ), we can use 𝑇 in our inequality, making it Δ𝑚𝑖𝑛 > (1 + 𝛼)2𝐶
√︃
𝛾𝐾 ln (𝑁𝐾𝑇 )

𝑡𝛾
.

Solving, we get:

𝑡 > [ 4𝐶
2 (1 + 𝛼)2𝛾𝐾 ln (𝑁𝐾𝑇 )

Δ2

𝑚𝑖𝑛

]
1

𝛾

Thus, we can conclude that the exclusion inequality will be true when the above inequality is true, thus proving our bound. For simplicity,

we exclude the constant 𝐶 from our bound, providing the final regret bound for the exploitation phase:

𝑂 ( [ (1 + 𝛼)
2𝛾𝐾 ln (𝑁𝐾𝑇 )
Δ2

𝑚𝑖𝑛

]
1

𝛾 )

By Corollary 8, Lemma 1 holds simultaneously for all 𝑡 ≤ 𝑇 with probability at least 1 − 3

(𝑁𝐾 )3 . Therefore, the above regret bound holds

uniformly across the entire horizon with high probability. □

B.6 Full Procedural Fairness Regret Bound
Proof. Let 𝐹𝑖 represent agent 𝑖’s true favourite-arm set under the true means 𝜇∗. At round 𝑡 , the algorithm uses the estimates, 𝜇𝑡 , and

𝑧𝑡
𝑘
=

√︂
2 ln (𝑁𝐾𝑡 )

𝑛𝑡
𝑘

for arm 𝑘 at some timestep 𝑡 , and 𝑛𝑡
𝑘
represents the number of times arm 𝑘 has been pulled by time 𝑡 .

Additionally, let Δ𝑖, 𝑗,𝑘 = 𝜇∗𝑖, 𝑗 − 𝜇∗𝑖,𝑘 > 0 iff 𝑘 ∉ 𝐹𝑖 for any 𝑗 ∈ 𝐹𝑖 and 𝑘 ∉ 𝐹𝑖 . Let Δ𝑚𝑖𝑛 =𝑚𝑖𝑛𝑖, 𝑗∈𝐹𝑖 ,𝑘∉𝐹𝑖Δ𝑖, 𝑗,𝑘 ≥ 0. Note Δ𝑚𝑖𝑛 is only 0 if all

agents are indifferent between all arms, that is, |𝐹𝑖 | = 𝐾 for all agents 𝑖 , in which case the problem is trivial for that agent. We also have

𝐹𝑖 = {𝑘 : 𝜇𝑡
𝑖,𝑘
+ 𝛼𝑧𝑡

𝑘
≥ 𝜇𝑡𝑖, 𝑗 − 𝛼𝑧𝑡𝑗 }, where 𝑗 = argmax𝑗 𝜇

𝑡
𝑖, 𝑗 for some agent 𝑖 .

In our setting, we define regret to refer to the number of mismatches. Specifically, we count a mismatch at time 𝑡 if ∃𝑖 : 𝐹𝑖 (𝑡) ≠ 𝐹𝑖 . Thus:



𝑅(𝑇 ) =
𝑇∑︁
𝑡=1

1{∃𝑖 : 𝐹𝑖 (𝑡) ≠ 𝐹𝑖 } ≤
𝑇∑︁
𝑡=1

𝑝𝑡
𝑟𝑎𝑛𝑑︸    ︷︷    ︸
(𝑎)

+
𝑇∑︁
𝑡=1

(1 − 𝑝𝑡
𝑟𝑎𝑛𝑑
)1{𝐹𝑖 (𝑡) ≠ 𝐹𝑖 during non-random steps}︸                                                                   ︷︷                                                                   ︸

(𝑏 )

From Lemma 2, we have that part (a) has the bound 𝑂 (𝑇𝛾
𝛾
), and from Lemma 4, we have that part (b) has bound 𝑂 ( [ (1+𝛼 )

2𝛾𝐾 ln (𝑁𝐾𝑇 )
Δ2

𝑚𝑖𝑛

]
1

𝛾 ).
Using part (a) and (b) together, we have our final regret bound:

𝑅(𝑇 ) =𝑂 (𝑇𝛾 ) +𝑂 ( [ (1 + 𝛼)
2𝛾𝐾 ln (𝑁𝐾𝑇 )
Δ2

𝑚𝑖𝑛

]
1

𝛾 )

□

B.7 Procedural Fairness Guarantees
Proof. The highest amount of utility an agent could achieve is if all probability were placed on their favourite arm. Since the procedural

fairness policy guarantees each agent at least 1/𝑁 probability on their favourite arm, each agent receives at least 1/𝑁 of their maximum

achievable utility in expectation, thus giving them a proportional share. This is similar to the concept of proportionality [5]. □

B.8 Fractional Pull Bound
Lemma 5 (Fractional Pulls). Suppose 𝑧𝑡

𝑘
=

√︂
2 ln (𝑁𝐾𝑡 )

𝑛𝑡
𝑘

, then for either the Equality Fairness or Utilitarian Fairness algorithm:

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑝𝑡
𝑘
𝑧𝑡
𝑘
=𝑂 (

√︁
𝐾𝑇 ln (𝑁𝐾𝑇 )) .

Proof. Let 𝐼 𝑡
𝑘
be 1 if arm 𝑘 is pulled at timestep 𝑡 , otherwise 0. We want to find a bound for E[∑𝑇

𝑡=1

∑𝐾
𝑘=1

𝑝𝑡
𝑘

√︂
2 ln (𝑁𝐾𝑡 )

𝑛𝑡
𝑘

].

By definition, we have:

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑝𝑡
𝑘

√︄
2 ln (𝑁𝐾𝑡)

𝑛𝑡
𝑘

≤
√︁
2 ln (𝑁𝐾𝑇 )

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑝𝑡
𝑘√︃
𝑛𝑡
𝑘

We want to bound E[∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝑝𝑡
𝑘√︃
𝑛𝑡
𝑘

].

Because 𝑛𝑡
𝑘
= 𝑛𝑡−1

𝑘
+ 𝐼 𝑡

𝑘
, we know that

1√︃
𝑛𝑡
𝑘

≤ 1√︃
𝑛𝑡−1
𝑘

. Therefore,

∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝑝𝑡
𝑘√︃
𝑛𝑡
𝑘

≤ ∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝑝𝑡
𝑘√︃
𝑛𝑡−1
𝑘

.

We know, by definition, that E[𝐼 𝑡
𝑘
|arm pull history] = 𝑝𝑡

𝑘
. So E[ 𝑝𝑡

𝑘√︃
𝑛𝑡−1
𝑘

] = E[ 1√︃
𝑛𝑡−1
𝑘

E[𝐼 𝑡
𝑘
|arm pull history]] = E[ 𝐼𝑡

𝑘√︃
𝑛𝑡−1
𝑘

], making our new

bound E[∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝐼𝑡
𝑘√︃
𝑛𝑡−1
𝑘

].

Consider the term

∑𝑇
𝑡=1

𝐼𝑡
𝑘√︃
𝑛𝑡−1
𝑘

. We can reindex the summation and convert into an integral to get a bound:

𝑇∑︁
𝑡=1

𝐼 𝑡
𝑘√︃
𝑛𝑡−1
𝑘

=

𝑛𝑇
𝑘∑︁

𝑚=1

1

√
𝑚 − 1

≤ 1 +
𝑛𝑇
𝑘∑︁

𝑚=2

1

√
𝑚 − 1

≤ 1 +
∫ 𝑛𝑇

𝑘
−1

0

1

√
𝑥
𝑑𝑥 ≤ 2

√︃
𝑛𝑇
𝑘

Summing over 𝐾 , we get
∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝐼𝑡
𝑘√︃
𝑛𝑡−1
𝑘

≤ 2

∑𝐾
𝑘=1

√︃
𝑛𝑇
𝑘
.

Now we must bound

∑𝐾
𝑘=1

√︃
𝑛𝑇
𝑘
and then multiply it by the original ln term, and we have our final bound.

Consider the Cauchy-Schwarz inequality: (∑𝑘 𝑎𝑘𝑏𝑘 )2 ≤
∑
𝑘 𝑎

2

𝑘

∑
𝑘 𝑏

2

𝑘
. Applying this to our situation gives us:

∑𝐾
𝑘=1

√︃
𝑛𝑇
𝑘
≤
√
𝐾𝑇 . Combining

our prior results, this gives: E[∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝐼𝑡
𝑘√︃
𝑛𝑡−1
𝑘

] ≤ 2

√
𝐾𝑇 .

Putting it all together, this gives us:



E[
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑝𝑡
𝑘

√︄
2 ln (𝑁𝐾𝑡)

𝑛𝑡
𝑘

] ≤
√︁
2 ln (𝑁𝐾𝑇 )E[

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝑝𝑡
𝑘√︃
𝑛𝑡
𝑘

] ≤
√︁
2 ln (𝑁𝐾𝑇 ) · 2

√
𝐾𝑇 = 2

√︁
2𝐾𝑇 ln (𝑁𝐾𝑇 ) =𝑂 (

√︁
𝐾𝑇 ln (𝑁𝐾𝑇 ))

□

B.9 Equality Fairness Bound
Proof. Recall that 𝜇∗ are the true reward means and 𝜇𝑡 are the estimated reward means at timestep 𝑡 , and that the regret at timestep 𝑡 ,

is represented by 𝑟𝑡 = 𝑓 (𝑝𝑡 , 𝜇∗) −𝑚𝑖𝑛𝑝 𝑓 (𝑝, 𝜇∗). The total regret over 𝑇 timesteps is represented by 𝑅𝑇 =
∑𝑇
𝑡=1 𝑟𝑡 . From Lemma 1, we have

|𝜇𝑡
𝑖,𝑘
− 𝜇∗

𝑖,𝑘
| ≤ 𝑧𝑡

𝑘
. Assume 𝛼 = 4.

Now, we want to establish that |𝑓 (𝑝, 𝜇𝑡 ) − 𝑓 (𝑝, 𝜇∗) | ≤ 4

∑𝐾
𝑘=1

𝑝𝑘𝑧
𝑡
𝑘
. Let 𝑢𝑖 represent the expected utility of agent 𝑖 under the actual means

𝜇∗ and some policy 𝑝 , and let 𝑢′𝑖 represent the expected utility of agent 𝑖 under the estimated means 𝜇𝑡 and the same policy 𝑝 . Then, by the

Lipschitz bound and triangle inequality we have:

|𝑓 (𝑝, 𝜇𝑡 ) − 𝑓 (𝑝, 𝜇∗) | = 2

𝑁 (𝑁 − 1)

�����∑︁
𝑖< 𝑗

(𝑢𝑖 − 𝑢 𝑗 )2 −
∑︁
𝑖< 𝑗

(𝑢′𝑖 − 𝑢′𝑗 )2
�����

=
2

𝑁 (𝑁 − 1)
∑︁
𝑖< 𝑗

��(𝑢𝑖 − 𝑢 𝑗 )2 − (𝑢′𝑖 − 𝑢′𝑗 )2��
≤ 2

𝑁 (𝑁 − 1)
∑︁
𝑖< 𝑗

2

��(𝑢𝑖 − 𝑢 𝑗 ) − (𝑢′𝑖 − 𝑢′𝑗 )��
≤ 4

𝑁 (𝑁 − 1)
∑︁
𝑖< 𝑗

��𝑢𝑖 − 𝑢′𝑖 �� + ��𝑢 𝑗 − 𝑢′𝑗 ��
Then, since every index appears exactly 𝑁 − 1 times, we have that∑︁

𝑖< 𝑗

��𝑢𝑖 − 𝑢′𝑖 �� + ��𝑢 𝑗 − 𝑢′𝑗 �� ≤ (𝑁 − 1)∑︁
𝑖

��𝑢𝑖 − 𝑢′𝑖 ��
Which gives us that |𝑓 (𝑝, 𝜇𝑡 ) − 𝑓 (𝑝, 𝜇∗) | ≤ 4

𝑁

∑
𝑖

��𝑢𝑖 − 𝑢′𝑖 ��.
Now, by definition of 𝑢𝑖 , we know that 𝑢𝑖 − 𝑢′𝑖 =

∑𝐾
𝑘=1

𝑝𝑘 (𝜇∗𝑖,𝑘 − 𝜇
𝑡
𝑖,𝑘
), and therefore

��𝑢𝑖 − 𝑢′𝑖 �� ≤ ∑𝐾
𝑘=1

𝑝𝑘

���𝜇∗
𝑖,𝑘
− 𝜇𝑡

𝑖,𝑘

���. From our Hoeffding

inequality before, we can assume with high probability, that |𝜇𝑡
𝑖,𝑘
− 𝜇∗

𝑖,𝑘
| ≤ 𝑧𝑡

𝑘
, so therefore:

��𝑢𝑖 − 𝑢′𝑖 �� ≤ 𝐾∑︁
𝑘=1

𝑝𝑘𝑧
𝑡
𝑘

and

𝑁∑︁
𝑖=1

��𝑢𝑖 − 𝑢′𝑖 �� ≤ 𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑝𝑘𝑧
𝑡
𝑘
= 𝑁

𝐾∑︁
𝑘=1

𝑝𝑘𝑧
𝑡
𝑘

Therefore:

|𝑓 (𝑝, 𝜇𝑡 ) − 𝑓 (𝑝, 𝜇∗) | ≤ 4

𝑁

∑︁
𝑖< 𝑗

��𝑢𝑖 − 𝑢′𝑖 ��
≤ 4

𝑁
𝑁

𝐾∑︁
𝑘=1

𝑝𝑘𝑧
𝑡
𝑘

= 4

𝐾∑︁
𝑘=1

𝑝𝑘𝑧
𝑡
𝑘

Now we show that the total objective is bounded. By definition of 𝑝𝑡 , we know that 𝑓 (𝑝𝑡 , 𝜇𝑡 ) − 𝛼
∑
𝑘 𝑝

𝑡
𝑘
𝑧𝑡
𝑘
≤ 𝑓 (𝑝∗, 𝜇𝑡 ) − 𝛼 ∑

𝑘 𝑝
∗
𝑘
𝑧𝑡
𝑘
where

𝑝∗ is the optimal policy (recall that 𝜇 is an estimate).

So, we have:

𝑓 (𝑝𝑡 , 𝜇𝑡 ) − 𝛼
∑︁
𝑘

𝑝𝑡
𝑘
𝑧𝑡
𝑘
≤ 𝑓 (𝑝∗, 𝜇𝑡 ) − 𝛼

∑︁
𝑘

𝑝∗
𝑘
𝑧𝑡
𝑘

Adding −𝑓 (𝑝𝑡 , 𝜇∗) + 𝑓 (𝑝𝑡 , 𝜇∗) to the LHS and −𝑓 (𝑝∗, 𝜇∗) + 𝑓 (𝑝∗, 𝜇∗) to the RHS and rearranging gives us:



𝑓 (𝑝𝑡 , 𝜇∗) − 𝑓 (𝑝∗, 𝜇∗) ≤ [𝑓 (𝑝𝑡 , 𝜇∗) − 𝑓 (𝑝𝑡 , 𝜇𝑡 )] + [𝑓 (𝑝∗, 𝜇𝑡 ) − 𝑓 (𝑝∗, 𝜇∗)] + 𝛼
∑︁
𝑘

𝑝𝑡
𝑘
𝑧𝑡
𝑘
− 𝛼

∑︁
𝑘

𝑝∗
𝑘
𝑧𝑡
𝑘

≤ 4

∑︁
𝑘

𝑝𝑡
𝑘
𝑧𝑡
𝑘
+ 4

∑︁
𝑘

𝑝∗
𝑘
𝑧𝑡
𝑘
+ 𝛼

∑︁
𝑘

𝑝𝑡
𝑘
𝑧𝑡
𝑘
− 𝛼

∑︁
𝑘

𝑝∗
𝑘
𝑧𝑡
𝑘
(By earlier Lipschitz bound)

≤ (4 + 𝛼)
∑︁
𝑘

𝑝𝑡
𝑘
𝑧𝑡
𝑘
+ (4 − 𝛼)

∑︁
𝑘

𝑝∗
𝑘
𝑧𝑡
𝑘
(Set 𝛼 = 4 to kill the second term)

= 8

∑︁
𝑘

𝑝𝑡
𝑘
𝑧𝑡
𝑘

Since𝑅𝑇 ≤ 8

∑𝑇
𝑡=1

∑𝐾
𝑘=1

𝑝𝑡
𝑘
𝑧𝑡
𝑘
= 8

∑𝐾
𝑘=1

∑𝑇
𝑡=1 𝑝

𝑡
𝑘
𝑧𝑡
𝑘
, we nowfind a bound on

∑𝐾
𝑘=1

∑𝑇
𝑡=1 𝑝

𝑡
𝑘
𝑧𝑡
𝑘
, which fromLemma 5we know is𝑂 (

√︁
𝐾𝑇 ln (𝑁𝐾𝑇 )),

thus completing our proof. □

B.10 Utilitarian Fairness Bound
Proof. Let𝑀𝑘 =

∑𝑁
𝑖=1 𝜇

∗
𝑖,𝑘
,𝑀∗ =max𝑘 𝑀𝑘 , Δ𝑘 =𝑀∗−𝑀𝑘 . At round 𝑡 , the algorithm chooses a distribution 𝑝𝑡 by solving max𝑝

∑
𝑘 𝑝𝑘 (𝑀𝑡

𝑘
+

𝛼𝑧𝑡
𝑘
),𝑀𝑡

𝑘
=

∑𝑁
𝑖=1 𝜇̂𝑖,𝑘 , 𝑧

𝑡
𝑘
=

√︂
2 ln (𝑁𝐾𝑡 )

𝑛𝑡
𝑘

, where the regret at time 𝑡 is defined as 𝑟𝑡 =𝑀
∗ −∑

𝑘 𝑝
𝑡
𝑘
𝑀𝑘 , and total regret is 𝑅𝑇 =

∑𝑇
𝑡=1 𝑟𝑡 . Assume

𝛼 ≥ 𝑁 .

By Lemma 1, we have with high probability that |𝑀𝑡
𝑘
−𝑀𝑘 | ≤ 𝑁𝑧𝑡𝑘 .

By definition, at round 𝑡 , the algorithm selects a distribution such that

∑
𝑘 𝑝

𝑡
𝑘
(𝑀𝑡

𝑘
+ 𝛼𝑧𝑡

𝑘
) ≥ 𝑀𝑡

𝑘∗ + 𝛼𝑧
𝑡
𝑘∗ , where 𝑘

∗
is the actual best arm

under the true means. Let𝑀𝑡
𝑘
=𝑀𝑘 + 𝜀𝑡𝑘 , where 𝜀

𝑡
𝑘
:=𝑀𝑡

𝑘
−𝑀𝑘 . From earlier we have that |𝜀𝑡

𝑘
| ≤ 𝑁𝑧𝑡

𝑘
. This gives us:

∑︁
𝑘

𝑝𝑡
𝑘
(𝑀𝑡

𝑘
+ 𝛼𝑧𝑡

𝑘
) ≥

∑︁
𝑘

𝑝∗
𝑘
(𝑀𝑡

𝑘
+ 𝛼𝑧𝑡

𝑘
)

Where 𝑝∗ is an optimal policy. Rearranging this equation gives:

∑︁
𝑘

𝑝∗
𝑘
𝑀𝑡
𝑘
−

∑︁
𝑘

𝑝𝑡
𝑘
𝑀𝑡
𝑘
=

∑︁
𝑘

𝑀𝑡
𝑘
(𝑝∗
𝑘
− 𝑝𝑡

𝑘
) (1)

≤ 𝛼
(∑︁
𝑘

𝑝𝑡
𝑘
𝑧𝑡
𝑘
−

∑︁
𝑘

𝑝∗
𝑘
𝑧𝑡
𝑘

)
(2)

= 𝛼 (𝐷𝑡 − 𝐷∗𝑡 ) (3)

With 𝐷𝑡 =
∑
𝑘 𝑝

𝑡
𝑘
𝑧𝑡
𝑘
and 𝐷∗𝑡 =

∑
𝑘 𝑝
∗
𝑘
𝑧𝑡
𝑘
. Recall that regret is defined as 𝑟𝑡 =𝑀

∗ −∑
𝑘 𝑝

𝑡
𝑘
𝑀𝑘 , expanding gives us 𝑟𝑡 =

∑
𝑘 𝑝
∗
𝑘
𝑀𝑘 −

∑
𝑝𝑡
𝑘
𝑀𝑘 =∑

𝑘 𝑀𝑘 (𝑝∗𝑘 − 𝑝
𝑡
𝑘
).

By definition, we have that𝑀𝑘 =𝑀𝑡
𝑘
− 𝜖𝑡

𝑘
, so plugging in we get:

𝑟𝑡 =
∑︁
𝑘

𝑀𝑘 (𝑝∗𝑘 − 𝑝
𝑡
𝑘
) (4)

=
∑︁
𝑘

(𝑀𝑡
𝑘
− 𝜖𝑡

𝑘
) (𝑝∗

𝑘
− 𝑝𝑡

𝑘
) (5)

=
∑︁
𝑘

𝑀𝑡
𝑘
(𝑝∗
𝑘
− 𝑝𝑡

𝑘
) −

∑︁
𝑘

𝜖𝑡
𝑘
(𝑝∗
𝑘
− 𝑝𝑡

𝑘
) (6)

≤ 𝛼 (𝐷𝑡 − 𝐷∗𝑡 ) −
∑︁
𝑘

𝜖𝑡
𝑘
(𝑝∗
𝑘
− 𝑝𝑡

𝑘
) (7)

Recall that |𝜖𝑡
𝑘
| ≤ 𝑁𝑧𝑡

𝑘
by Lemma 1, so we have that |∑𝑘 𝜖

𝑡
𝑘
(𝑝∗
𝑘
− 𝑝𝑡

𝑘
) | ≤ ∑

𝑘 |𝜖𝑡𝑘 | | (𝑝
∗
𝑘
− 𝑝𝑡

𝑘
) | ≤ ∑

𝑘 𝑁𝑧
𝑡
𝑘
| (𝑝∗

𝑘
− 𝑝𝑡

𝑘
) |.

Since 𝑝∗
𝑘
and 𝑝𝑡

𝑘
and always at least 0, we have that |𝑝∗

𝑘
− 𝑝𝑡

𝑘
| ≤ 𝑝∗

𝑘
+ 𝑝𝑡

𝑘
. This gives:

∑
𝑘 𝑁𝑧

𝑡
𝑘
| (𝑝∗

𝑘
− 𝑝𝑡

𝑘
) | ≤ ∑

𝑘 𝑁𝑧
𝑡
𝑘
(𝑝∗
𝑘
+ 𝑝𝑡

𝑘
) = 𝑁 (𝐷∗𝑡 +𝐷𝑡 ).

Putting it all together, we have:



𝑟𝑡 ≤ 𝛼 (𝐷𝑡 − 𝐷∗𝑡 ) −
∑︁
𝑘

𝜖𝑡
𝑘
(𝑝∗
𝑘
− 𝑝𝑡

𝑘
) (8)

≤ 𝛼 (𝐷𝑡 − 𝐷∗𝑡 ) +
�����∑︁
𝑘

𝜖𝑡
𝑘
(𝑝∗
𝑘
− 𝑝𝑡

𝑘
)
����� (9)

≤ 𝛼 (𝐷𝑡 − 𝐷∗𝑡 ) + 𝑁 (𝐷∗𝑡 + 𝐷𝑡 ) (10)

= (𝑁 + 𝛼)𝐷𝑡 + (𝑁 − 𝛼)𝐷∗𝑡 (11)

Set 𝛼 ≥ 𝑁 to drop the second term, leaving us with 𝑟𝑡 ≤ (𝑁 + 𝛼)𝐷𝑡 = (𝑁 + 𝛼)
∑
𝑘 𝑝

𝑡
𝑘
𝑧𝑡
𝑘
.

Summing over all 𝑡 , we get 𝑅𝑇 =
∑𝑇
𝑡=1 𝑟𝑡 ≤ (𝑁 + 𝛼)

∑𝑇
𝑡=1

∑
𝑘 𝑝

𝑡
𝑘
𝑧𝑡
𝑘
. From lemma 5, we know that E[∑𝑇

𝑡=1

∑
𝑘 𝑝

𝑡
𝑘
𝑧𝑡
𝑘
] =𝑂 (

√︁
𝐾𝑇 ln (𝑁𝐾𝑇 )),

therefore, E[𝑅𝑇 ] =𝑂 ((𝑁 + 𝛼)
√︁
𝐾𝑇 ln (𝑁𝐾𝑇 )), our desired bound.

□

B.11 Procedural Fairness and Equality Fairness Impossibility
Proof. Consider a simple setting with two agents and two arms with rewards:

𝜇 =

[
𝑀 0

0 1

]
where 𝑀 > 1. Under procedural fairness, each agent must allocate

1

2
probability to their preferred arm, yielding policy 𝑃1 = ( 1

2
, 1
2
) with

expected rewards of
𝑀
2
and

1

2
for the two agents. This creates a utility disparity that grows with𝑀 .

For equality fairness, we require equal expected rewards, which is achieved by 𝑃2 = ( 1

𝑀+1 ,
𝑀
𝑀+1 ). However, this allocates only

1

𝑀+1
probability to arm 1, significantly less than the

1

2
required by procedural fairness when𝑀 is large. As𝑀 →∞, the procedural fairness score

approaches zero.

Therefore, no policy can simultaneously satisfy both fairness criteria for all reward structures. □

B.12 Procedural Fairness and Utilitarian Fairness Impossibility
Proof. Consider a simple setting with two agents and two arms with rewards:

𝜇 =

[
𝑀 0

0 1

]
where 𝑀 > 1. Under procedural fairness, each agent will allocate

1

2
probability to their preferred arm, which will yield 𝑃1 = ( 1

2
, 1
2
) with

expected rewards of
𝑀
2
and

1

2
for the two agents and an expected total utility of

𝑀+1
2

. However, the policy 𝑃2 which maximizes overall utility

and satisfies perfect utilitarian fairness would be 𝑃2 = (1, 0) which would result in an expected total utility of𝑀 . However,𝑀 > 𝑀+1
2

for all

values of𝑀 > 1, leading to a disparity.

□

B.13 Utility-Based Nash Welfare Not In Procedural Core
Proof. We prove this through a counter-example. Consider a setting with two agents (𝑁 = 2) and two arms (𝐾 = 2). The reward matrix

𝜇 =

(
1 0.99

0 1

)
Agent 1’s favourite arm is arm 1, and Agent 2’s favourite arm is arm 2. We will now find the distribution over arms that maximizes the

utility-based Nash welfare.

Let 𝑝2 be the probability of pulling arm 2 and 𝑝1 = 1 − 𝑝2 be the probability of pulling arm 1. Then:

Agent 1’s expected reward: 𝑢1 (𝑝1, 𝑝2) = 1 · 𝑝1 + 0.99 · 𝑝2 = 𝑝1 + 0.99 𝑝2,

Agent 2’s expected reward: 𝑢2 (𝑝1, 𝑝2) = 0 · 𝑝1 + 1 · 𝑝2 = 𝑝2 .

Utility-based Nash Welfare (the product of expected rewards) is(
𝑝1 + 0.99 𝑝2

)
· 𝑝2 =

(
𝑝1

)
𝑝2 + 0.99 𝑝22 .

Since 𝑝1 = 1 − 𝑝2, this equals
(1 − 𝑝2)𝑝2 + 0.99 𝑝22 = 𝑝2 − 𝑝22 + 0.99 𝑝22 = 𝑝2 − 0.01 𝑝22 .



Taking the derivative:

𝑑

𝑑𝑝2

(
𝑝2 − 0.01 𝑝22

)
= 1 − 0.02𝑝2 .

On the interval 𝑝2 ∈ [0, 1], this derivative never vanishes (it is 1 − 0.02𝑝2 > 0 for all 𝑝2 ∈ [0, 1]). Hence the function is strictly increasing

over [0, 1], with its maximum at the boundary 𝑝2 = 1.

Thus the unique maximizer of utility-based Nash Welfare is

(𝑝1, 𝑝2) = (0, 1) .

We can now show that this distribution is not in the procedural core. Under (0, 1), the procedural utility of an agent is the total probability

on that agent’s favourite arm(s). Thus:

𝑢
(proc)

1

(
(0, 1)

)
= 𝑝1 = 0

𝑢
(proc)

2

(
(0, 1)

)
= 𝑝2 = 1

We can look at the single-agent coalition𝐶 = {Agent 1}. By deviating to the distribution (1, 0) (which puts probability 1 on arm 1), Agent 1’s

procedural utility becomes

𝑢
(proc)

1

(
(1, 0)

)
= 1.

Since
|𝐶 |
𝑁

= 1

2
, we scale this by

1

2
to obtain

|𝐶 |
𝑁
· 𝑢(proc)

1

(
(1, 0)

)
= 1

2
× 1 = 0.5 > 0 = 𝑢

(proc)

1

(
(0, 1)

)
.

Hence Agent 1 alone can strictly increase their procedural utility when switching from (0, 1) to (1, 0). By definition of the procedural core,

(0, 1) is therefore blocked and cannot be in the procedural core. Thus, the unique distribution maximizing utility-based Nash Welfare in this

instance, (0, 1), is not in the procedural core because a single-agent coalition has a profitable deviation. This shows that the utility-based

Nash welfare maximizing solution is not guaranteed to be in the procedural core. □

B.14 Procedural Fairness Implies Procedural Core
Proof. Let 𝑥 be a procedurally fair policy that maximizes the decision share-based Nash product, namely:

𝑛∏
𝑖=1

∑︁
𝑗∈𝐹𝑖

𝑝 𝑗

for some distribution 𝑃 = (𝑝1, ..., 𝑝𝐾 ) ∈ Δ𝑘 Further, let 𝑢𝑖 (𝑥) represent the procedural utility obtained by agent 𝑖 under the policy 𝑥 . In

other words, 𝑢𝑖 (𝑥) =
∑
𝑗∈𝐹𝑖 𝑝 𝑗 .

Suppose, for the sake of contradiction, that some coalition 𝐶 ⊆ 𝑁 can block 𝑥 by switching to some other procedurally fair policy 𝑦. In

order to block, the following must be satisfied:

|𝐶 |
𝑁
𝑢𝑖 (𝑦) ≥ 𝑢𝑖 (𝑥)∀𝑖 ∈ 𝐶

with at least one strict equality. Then, let 𝛼 =
|𝐶 |
𝑁

and

𝑧 = 𝛼𝑦 + (1 − 𝛼)𝑥

Since both 𝑥 and 𝑦 fall within the set of policies that satisfy the procedural fairness constraints (each agent places
1

𝑁
on their favourite arms,

and total mass sums to 1), so does their convex combination 𝑧. Since we have that
|𝐶 |
𝑁
𝑢𝑖 (𝑦) ≥ 𝑢𝑖 (𝑥), we also have that

𝑢𝑖 (𝑧) = 𝛼𝑢𝑖 (𝑦) + (1 − 𝛼)𝑢𝑖 (𝑥) ≥ 𝑢𝑖 (𝑥)

with at least one strict inequality. This gives us: ∏
𝑖∈𝑁

𝑢𝑖 (𝑧) >
∏
𝑖∈𝑁

𝑢𝑖 (𝑥)

because at least one factor strictly increased while all others stayed the same, and we know, by definition, since we are using procedurally

fair policies that no agent will have a utility of 0.

However, 𝑥 was specifically chosen to maximize

∏
𝑖∈𝑁 𝑢𝑖 (𝑥), which is a contradiction. Therefore, the procedural fairness policy with

decision share-based Nash welfare tie-breaking is in the procedural core.

□



B.15 Pareto Incomparability
Proof. Proof by counterexample. Consider the following utility matrix:

𝜇 =

[
𝐴 1

1 𝐵

]
Where 0 ≤ 𝐴 < 𝐵 < 1. Thus, we know for certain that the procedurally fair policy here 𝑃𝑃𝐹 = ( 1

2
, 1
2
). Further, we also know that the

utilitarian fair policy would be 𝑃𝑈𝐹 = (0, 1), as 𝐴 < 𝐵. Thus, the utility-based Nash welfare solution would be Pareto incompatible with the

procedurally fair solution if the probability it places on the rightmost arm is strictly greater than 0.5 but strictly less than 1.

Let 𝑝 represent the probability we pull the leftmost arm, and 1 − 𝑝 denote the probability we pull the rightmost arm. Let 𝑃𝑁𝑊 = (𝑝, 1 − 𝑝).
Then, for each agent, we have utilities:

𝑈1 (𝑃𝑁𝑊 ) = 𝑝 (𝐴 − 1) + 1

𝑈2 (𝑃𝑁𝑊 ) = 𝐵 + 𝑝 (1 − 𝐵)
Then, to find the optimal utility-based Nash welfare solution, we want to optimize:

𝑓 (𝑃𝑁𝑊 ) =𝑈1 (𝑃𝑁𝑊 )𝑈2 (𝑃𝑁𝑊 ) = (𝑝 (𝐴 − 1) + 1) (𝐵 + 𝑝 (1 − 𝐵))
𝑓 ′ (𝑃𝑁𝑊 ) = 𝐵(𝐴 − 1) + 2𝑝 (1 − 𝐵) (𝐴 − 1) + 1 − 𝐵 = 0

𝑝 =
𝐵(2 −𝐴) − 1

2(1 − 𝐵) (𝐴 − 1)
Let 𝐴 = 0.4 and 𝐵 = 0.6, which satisfies our constraints from earlier. Then, 𝑝 = 1

12
and 1 − 𝑝 = 11

12
> 1

2
, but less than 1. We can therefore

derive, that:

𝑃𝐹 (𝑃𝑃𝐹 , 𝜇) = 1 > 𝑃𝐹 (𝑃𝑁𝑊 , 𝜇)
and

𝑈𝐹 (𝑃𝑁𝑊 , 𝜇) > 𝑈𝐹 (𝑃𝑃𝐹 , 𝜇)
Therefore, neither policy can guarantee Pareto dominance over the other.

□
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